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WALLINTERFERE NCE IN A TWO-DIMENSIONAL-FLOW WIND TUNNEL, WITH

CONSIDERATION OF THE EFFECT OF COMPRESSIBILITY

By H. JULIANALLEN and WALTER G. VINCBNTI

SUMMARY

Th4mrettkaltumk+wall correetti are o?emkedfor an airfoil
oj finiie thickness and camber ‘in a two-dinwaiond -- wind
tunmd. The theory takee aeeowd of the ejfecte of the wake of
tha airfoil and of the compreewity of thejtuid, and b baaed
upon the awumption thui the chord of the ainfo# t% emall in
comparkm wiih the heighi of tlu tunnel. COmMwdim ix
given to the phenomeru?nof clwking at high speeds and its
relu$ion to the tunwl-wull correciioias. The th.eoreoretiml
resul.?aare compared with the emall anwuni of L3uwpeed ex-
perinwnlu.1dui’zandu.bk and the agreemeniill 80C71i% be 8d’i.&

factory, evenfor reluiiwly furge tzzlu.aof the chord-lwightr~”o.

INTRODUCTION

The need for reliable wind-tunnel data for the design of
high-performance aircraft has led in recent years to attempts
to make the conditions of the tunnel teats cm.form more
closely with the conditions prevailing in flight, especially with
regard L% the Reynolds and Ma& numbers. Beeause of
prncticnl limitations in size and power, most existing wind
tunnels, whether high speed or low speed, are not capable
of providing full-scale Reynolds numbers for all flight con-
ditions. In order tQ obtain the highest Reynolds numbers
possible under the circumstances, it is neeessary to use
models dimensions of whioh are as large as possible relative
to the cross-sectional dimensions of the tunnel test section.
The effect of such large size is to make the test conditions
dopmt fup?@r from the conditions prevailing in flight by
increasing the magnitude of the tunnel-wall interference. In
the case of tests at high Mach numbers, the interference is
increased still further by the tendency of the flow pattern
of a compressible fluid, if unrestrained, to Wand as the
Mach number of the undisturbed stream increases. Since
the walls of a closed-throat tunnel restrain certain of the
streamlines at a fixed distance from the model, this expansion
is prevented, and the tunnel-will interference and corrections
become progressively larger as the Mach number increases.
The results obtained in the tunnel must therefore be corrected
accurately for the eilects of wall intaference if they are b
be applied with confidence to the prediction of free-flight
characteristics.

In tests at high Mach numbers an additional complication
arises. The effect of a model in a closed-throat tunnel may,
in a sense, be thought of as equimilent to that of a constric-
tion in the throat of the tunnel. The resulting converging-

diverging nozzle formed by the model and the tunnel walls
then has roughly the same characteristics at high speeds as
the usueJ supersonic nozzle; that is, for some Mach number
km than unity in the undisturbed stream, sonic velocity is
reached at all points across a section of the tunnel at the
positiori of the model, and the flow in the dimxgiug region
downstream of this section becomes supersonic. When this
occurs, increased power input to the tunnel has no efFect
upon the velocity of the stream ahead of the model, the
additional power serving merely to increase the extent of the
supersonic region in the vicinity of the model. At this
point the tunnel is said to be ‘(choked” and no further
increase in the teat Mach number can be obtained. The
value of the Mach number at which choking occurs is thus of
extreme importance, since it determines the upper limit of
the range of Mach numbem which ean be obtained with a
given combination of model and tunnel.

k testing airfoils to obtain section characteristics at
subsonic speeds, it has beeome common practice in modern
closed-h-oat wind tunuek to have the model span the tunnel
sc that supporting struts and their accompanying inter-
ference effects are entirely eliminated. If the tunnel has a
cross section of rectanguh shape, this arrangement redts
in a flow which is essmtially two-dimensional.

The wall interference for such a two-dimensional-flow
wind tunnel has been the subjeot of numerous investigations,
the results in general being expressible as series in ascending
powers of (c/h), where c is the ohord of the airfoil and h the
height of the tungel. The eilect of y-all intarferenee upon
the’flow of an ideal’ fluid about a symmetrical airfoil at zero
angle of attack is determined I% the order (c/h)’ by Imek in
reference 1 and by Glauert in reference 2. The interference
for an infinitesimal thin, oambered airfoil at a small angle
of attack in an ideal fluid is given by Glauert to the order
(c/h)’ in reference 2, and investigations for the special case
of a flat plate have been carried out to a higher order of
accuracy by several writers. While the pre9ent report was
being prepared, work by Goldstein appeared (references 3
and 4) in which the interferenm is determined to the order
(c/h)’ for a general cambered airfoil of iinite thiclmess in an
incompr-ible fluid, no restriction being made in the general
results aa b the magnitude of the camber, thic.lmess, and the
force coefficients. A still later paper by Goldstein and
Young (reference 6) gives the modifications nece9sary in the
previous results to slow for the effect of fluid compressibility
ti the order (c/h)2.
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In the present paper,
determined to the order

the tunnel-wallcorrections are
(c/h)’ for the general airfoil in

a compressible fltid for Mach numbers bdow that at which
Choblg occur% It is assumed that the thickness and
camber of the airfoil are small and that the interference
velocities are everywhere small as compared with the velocity
of the undisturbed stream. A discussion is also included of
the Mach number at which choking occurs. The various
remdta presented are of essentially the same nature as those
which already have appeared separately in the references
cited, but the methods of development and catain of the
final results are different, especially with regard to the
inl%rference associated with lift. The validi~ of the iinal
corrections is examined by comparison with the available
experimental data. The equations also are compared with
the results of references 3, 4, and 5, and the afore-mentioned
differences are discussed.

The discussion is limited to airfoils placed midway between
the upper and lower walls of the tunnel. Mathematical
symbols are defied aa introduced in the text. For reference,
a lid of the more important symbols and their definitions is
given in appendix B.

DEVELOPMENT OF CORRECTION EQUATIONS

In an analysis of tunnel-wall interference it is dwirable
to look upon the theoretical development of the tunnel-wall
corrections as consisting of two park. Fimt, it is necessary
to determine the manner and extent to which the tunnel walls
alter the field of flow about the airfoil from what it would
be if they were not present. Second, it is necessary to
calculate the effect of these alterations upon the mm.sured
characteristic of the airfoil. The development of the
correction equations of this report has been divided into
these two general sections.

In referenm 6, the use of the method of superposition to
determine the pressure distribution over the sin-face of an
airfoil section in free air is presented. It is shown that in
the calculation of the flow at the surface of a thin airfoil of
qmall camber, the effects of camber and thickness may be
considered independently. This follows directly from the
fact that the velocities induced by the vorti sheet used to
represent camber and those induced by the source-sink system
used to represent thiclmes are simply additive in their
ef7ect on the flow over the airfoil.

To treat the problem of wall interference, it is again con-
venient to consider the thiclmess and camber effects sep-
arately. The flow changes associated with airfoil thickness
are found by considering the interaction between the tunnel
walls and the base proiile of the airfoil, the base profile
being defined as the profile the airfoil would have if the
camber were removed and the resulting symmetrical airfoil
placed at zero angle of attack. The interference effects
associated with airfoil camber are found by analyzing the
interaction between the tunnel walls and an infinitesimally
thin airfoil having the same camber as the actual airfoil. In
addition to the interference effects associated with airfoiI
thickn- and camber, it is necwsary to consider a further
alteration of the field of flow caused by the cmdhing iailuence
of the tunnel walls upon the airfoil wake. When the indi-

vidual effects promoted by the interference betawen the walls
and the airfoil thickness, camber, and wake are known, tho
total alteration in the flow at the airfoil is found by super-
position, and the characteristics of the airfoil in the nltomd
field of flow are compared with the characteristics in free air,
This comparison leads to simple formulas which enable the
prediction of the free-flight characteristics when the charac-
teristics in the tunnel are known.

The method of superposition, which is fundamental to the
entire analysis, is in genezal inapplicable to compressible flow
as the differential equation for such flow is nonlinear in the
physical plane. The separate solutions which are super-
posed are obtained, however, by assuming that the ni rfoil is
of small thickness and camber and that the induced velocities
are thus small m compared with the velocity of the undis-
turbed flow. On the basis of this assumption the equation
of compressible flow becomes a linear differential equation—
namely, Laplace’s equation (references 7, 8, nnd 9) —so that
superposition of velocitie9 is, in this case, technically per-
missible. Furthermore, the tunnel-wall corrections are in
most cases rather small relative to the experimental quanti-
ties being corrected, so that it is not thought that the use of
this approximate method will lead to large errors in the final
corrected quantities.

INFLUENCE OF TUNNEL WALIS UPON FIZLDOFPLOW.iT AIRFOIL

Thickness effect,-The interaction between the base pro-
file and the walls of a two-dimensional-flow tunnel has been
considered by Lock for the caae of an incompressible fluid
(reference 1; a discussion of Lock’s method is also given by
Glauert in reference 2). Lock’s method of aaalysis is
essentially to introduce an infinite series of images of the
base profile such as to satisfy the condition that there is no
flow normal to the walls, to replace each image by a suitable
source-sink doublet, and to calcuhte the velocity induced
at the base profile by this system of doublets. It is shown
that the net effect of the tunnel walls upon the flow nt the
base profile is to increase the effective axial velocity of cm
immmprwsible stream by the amount

(A, V’),=AUV’ (1)

where
V’ apparent stream velocity at airfoil as determined from

measurements taken at a point far ahead of model
a a factor dependent upon size of airfoil relative to tunnel
A a factor dependent upon shape of base proiile
The factor u is defied by the equation

(2

where (c/h) is the ratio of the airfoil chord to the tunnel
height. The factor A can be determined for any base profile
from the relation

where

Yt
dyJlx
Pf,

A=HWFJRWI’(:) ‘3)
ordinate of base profile at chordwisa station x
slope of surface of base profile at x
base-proiile pressure coefficient at x in an incom-

pressible fluid
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(It will be noted that the quantity M in references 1 and 2 is

equivalent to ~ Ac? in the notation of this report.) Values of

A for mnumber of base profiles are given in table I.
In appendix A, it is shown for linear theory that the effect

of compressibility upon the streamwise induced velocity
nt a given point a large distance above or below a body in a
uniform stream is such as to multiply the velocity increment
for incompressible flow by the factor 1/[1 —iJ&]sf’ where M
is the Mach number of the flow far upstream horn the body.
Applying this result to the velocity induced at the bsse
profile by each of the airfoils in Lock’s system of images, it
can be seen that for Q compressible fluid the increase in the
effective axial velocity in the tunnel is

A’v’=[1–(&)9’fl* ”v’
(4)

where 34’ is the apparent Mach number; that is, the Mach
number corresponding to the velocity V’. The result of
equation (4) has also been obtained by an independent
procedure in reference 5.

The value of A, as given by equation (3), is actually
slightly larger thsn that which would be obtained using the
first-order theory of this report. Moreover, second-order
theory would probably indicd.e that the value of A in the
compressible case would be slightly modified for the effect
of compressibility. A corresponding term for the drag
correction due to streamwise pressure gradient has been
shown in referents (10) to be slightly modified by the influ-
ence of compressibility. It is clearly inconsistent then to
employ the second order value of A without including the
oflect of compressibility upon its value. This additional
complication, however, has not been introduced since the
velocity correction due to thiclmem is of major importance
in those casea for which (c/h) is large and it is customary, and
properly so, to employ large valuea of (c/Ii) in low-speed
investigations only.

Consideration of the symmetry of the base profile and of
the system of images used by Lock to simulate the effects
of the tunnel walls indicates that the interaction between
the walls rmd the base proiile does not induce velocities
normal to the center line of the tunnel. Similarly the bsse
profile does not dect the longitudinal velocity gradient in
the tunnel at the position of the airfoil.

Wake effect.-In the wake of an airfoil moving through a
real fluid, the total head of the fluid is less than in the region
outside the wake. This reduction arises from the increruw
in thermal energy caused by fluid friction in the boundary
layer and in the wake itself and by any shock waves which
may exist in-the vicinity of the airfoil. Considering a section
normal to the wake, it may be said that the static pressure
across the stream is nearly constant if the section taken is
not too close to the trailing edge of the airfoil. It follows
that the reduction in total head which exists within the wake
must appear ahnost entirely as a decrease in the local dynamic
pressure of the fluid. This decrease arises primarily from
a reduction in the local veloci@ and secondmily from the
reduction in load density which accompanied the increaaed
temperature within the wake. Thus, since the local velocity

s43110-a%ll

and density within the wake are both less”than in the external
flow, the maw-flow rate per unit area is less inside the wake
than outside. This condition prevails both in the tunnel
and in free air. In the tunnel, however, the requirement of
continuity of flow between a transverse section upstresm
from the airfoil and a section across the wake necessitates,
in addition, that the maw-flow rate per unit area outside of
the wake is greater than the mass-flow rate per unit area
ahead of the airfoil. k order to satis~ this requirement,
the velocity in the tunnel outside of the wake must be
greater than that of the undisturbed stresm. This fact
implies that as the flow proceeds down the tunnel the velocity
of the main portion of the stream undergoes a gradual
increase from the value prevailing in the undisturbed
stream ahead of the model to some higher value downstream
of the airfoil. This does not hold true in free air, where the
velocities of the main flow upstream and downstream of the
model are equal. The interference between the wake and
the tunnel walls thus gives rise at the position of the model
to a velocity increment and a velocity gradient which are
not present in an unlimited stream. Further, as required
by Bernoulli’s equation, the velocity gradient is accompanied
by a longitudinal pressure gradient which likewise would not
wcist in free air.

To determine the magnitude of these effects the procedure
is briefly as follows: Two stations in the tunnel are considered,
one far upstream from the model and one far enough down-
stream so that the wake has spread i% the walls and the
velocity is again uniform acrow the tunnel. The difference in
static pressure between these two stations is evaluated as a
function of the measured drag of the airfoil. TIM pressure
gradient at the airfoil can be related to this prmsure differ-
ence and hence I% the drag of the airfoil by a convenient
analytic device, which is essentially the same as that used
by Goldstein (reference 3). The airfoil and its wake are
considered to be replaced by a fluid source located at tho
position of the airfoil. It, is specified that conditions far
upstream in the resulting hypothetical flow must be the same
as those misting in the actual stream. With this provision,
the magnitude of the velocity and static pressure far down-
stream can be detetied w functions of the upstresm
conditions and the strength of the source. The strength is
then related to the drag of the airfoil by requiring that the
static pressure difference promokd betweau the two stations
in the tunnel by the source flow is the same as that which
actually existi when the airfoil and wake are present. The
tunnel walls cm then be replaced by an ix&ite system of
such sources directly above and below the position of the
airfoil at intervals equal to the height of the tunnel. The
system of image sources alone, however, would iuduce a
small finite negative velocity at *ty upstream, so that
it is necessary to superpose on the flow field an additional
uniform flow of equaJ velocity in the positive direction in
order to satisfy the origimd requirement that the conditions
far upstream shall be unchanged. The velocity of this
flow, which is readily determined as a function of the source
strength and hence of the airfoil drag, then gives the velocity
increment caused at the airfoil by the interference between
the wake and the walls. The longitudinal velocity and
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pressure gradients at the position of the airfoil are found in
tams of the drag by evaluating the flow induced at that
point by the image sources. It is apparent that this entire
method of dysis fails to satisfy the actual condition as
regards the velocity at infinity downstream. This dis-
crepancy arises out of the f undamentd diilerence betxveen
the actual flow in the wake and the source flow by which it
is represented and is unavoidable as long as this representa-
tion is used.
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Consider the flow in a closed two-dimensional-flow wind
tunnel, as shown in figure 1. At a station far upstream,
the effect of the model upon the flow is negligible, so that
the velocity V’, the density p’, the static pressure p’, and
the absolute temperature T’ are constantacross the stream.
At a station far downstream, where the wake has spread to
the walls, the velocity V“, the density p“, the pressure p“,
and the absoluh temperature T“ are again constant across
the stream.

The dHerence between the premums p’ and p“ can be
related to the measured drag of the airfoil by means of the
conditions of continuity-, conservation of energy, and imp-
ulse and momentum, together with the state relations for
a perfect gas. The condition of continuity is given by

p’v’=pnv” (5]

and, if it is aw.uned that the flow is an adiabatic process,
conservation of total energy require that

or

wham.

9 gravitatiomd acceleration

(6)

J mechanical equivalent of heat
Cp specitic heat of gas at constant pressure
In modern wind tunnels the walls of the test section are
flared slightly to compemate for the growth of the boumhuy
layer on the walls, and only the drag of the airfoil therefore
need be considered. The impulse-momentum equation can
be written

D’
x=~’ –P”+P’(W2-P’’(V”)’

or

where D’ is the drag of the airfoti and cd’ the drag coeilicient
referred to the apparent dynamic pressure q’.

The velocity of sound V: in the undisturbed strewn is
related to the absohn% temperature by

(V:) ’=7BT’= (7–l)gJ~T’ (8)

where y is the ratio of specific heats and R is the gas constant.
By means of this relation, equation (6) can be written

v“~=

and, from equation (5),

() 1_2 ;–1 4

(~–l)(iw)’

11
z Tn +

<= l_ ()37-1
P’ (’y-l)(w)’

(9)

(lo)

The state equation for a perfect gas then provides the relations

N
P’ -+

()f_ P”~_T” ~ 2 T–l——_— —

# P’T’ T’ (y–I)(M’)’
(11)

and

—= RT’-%$=&p’?;’)’ ~–~(
(12)

Substitutions from equations (9), (10), (11), and (12) into
equation (7) gives
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from which it can be found that

II,2(;-1) ‘_l+7wY[l-g(;)]
– (7–l)(M’)’ (7+1) (M’)’ –

d (1
[1–(M’)’12-y(M’)2: ; 2+ Y(M’)2

(7+l)(J4’)2
(13)

()
For airfoils usually emp@4 fie fac~r cd’ f is ~~.

Expanding the above expression and neglecting terms con-

()
taining cd’ : to powers higher than the first gives

By means of this relation, together with equations (9) and
(10), the static pressure dHerence in tams of q’ is obtained
from equ~tion (7) as

(15)

Now, consider the airfoil and wake to be removed and
replaced by a fluid source of strength Q. II the flow con-
ditions far upstream are maintained unchanged, the mass
flow far downstream is then

hp,”V/ =hp’V’+ Q

or

p,’tv*” Q~=l+hj_ (16)

where the subscript 8 denotes conditions now prevailing at
the latter station. For reversible adiabatic flow

Since it is to be expected that (V,”/V’) will be close to unity,
the righhhand side of this equation may be expanded in

ascending POW’(XS of
[(%)+-d - ‘n&g

powers higher than the–fit &glec~d. Thus,

$=J$WV-ll
(17)

and equation (16) becomes

W1-%WW’-lII=l+Z%

Q
It is reasonable to assume that the ratio ~ is small as

compaxed with unity. Th~ solution of the preceding equa-

tion to the tit order iu ~~ is

()
Q

~ ‘1+&9h~

Bernoulli’s equation for reversible adiabatic
written

(18)

flow can be

P’—P*” _ 2

!l’ [[
1– 1–’+

Ymm @f’i(wwJ

()
since‘$ is close to unity, this may be replaced by the

approximate relation

()
2.@?!!=g ‘–l

i
Substitution horn equation (18) and neglect of the term

Qinvolving the squaxe of ~ then gives

P’–Ps”_ 2Q 1
L?’ hw ~ (19)

Comparison of equations (15) and (19) shows that the source
strength required to promoh the same pressure difference as
actually arises from the confinement of the airfoil wake is

Q=+{l+ (7– 1) W’)’] (20)

The tunnel walls are now replaced by an id.nite system
of sources of strength Q spaced h distance apart and located
directly above and below the position of the airfoil as shown
in figure 1. This image system together with the source
which has been placed at the position of the airfoil satisfies
the requirement that the flow at the plane of the tunnel wall
shall be tangential to the wall.

As shown in the first of equations (All) of appendix A, a
source of strength Q in a uniform flow of Compr-ible fluid
will induce at a distance r from itself a stceamwise velocity

where @ is the polar angle of the point in question and p
and M are the densi~ and Mach number of the undisturbed
stream. By virtue of this relation, the streamwise velocity
AzV’ induced at a point on the center line of the tunnel by
the entire system of image sources is

QAzv’=jj ~
{

Cos &

m-l TP Tm 41 — (M’)f[1— (M’)2 sin’ ~=]t

where rm and O. are the radiil distance and the polar angle
of the point relative b the source a distance mh above or
below the center line and p’and M’ are the density and
Mach number of the undisturbed flow in the tunnel. If the
distance from the position of the airfoil to the point on the
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center line is denoted by z (taken positive downstream), this
equation can be written

Aav’ = Q& x
Zrp’J1- -1 d+ [1— (Lf’)q m’h2

or

It mn be seen by setting z= – ~ in equation (21) that the
image sources induce at am infinite distance upstream a
veloci~

Q(A, V’).m= ‘zp,~[l– (M’)q

In order to satisfy the original requirement that conditions
far upstream remain unchanged, this velocity must be
counterbalanced by the superposition of a uniform flow of
equal magnitude but opposite sign. The addition of this
flow at all points in the field will result in a speeding up of
the general flow at the position of the airfoil by the amount

Qfi,v’=zp~h[l– (M’)7

or, substituting the source strength from equation (20),

A~v’ =
{
1+ (’y-l) (M’) Cd’ C

1—(M)2
1 ()xxv’

If the factor r is defined as

-olC
‘=4Z

(22)

the velocity increment induced at the position of the air-
foil by the interference between the wake and the walls may
thus finally be written for air (7=1.4) as

1+0.4 (M’)*
‘v’= 1– (M’)2 “cd’v’

(23)

The longitudinal velocity gradient produced at the position
of the airfoil by the flow from the image sources can be found
by dMerentiating equation (21) with respect to z and then
setting z=o. This gives finally

dV’ d(AzV’) UQ~. ~
‘6p’h’[1— (iW)73fl

or, by virtue of equation (20),

1+ (y— 1) (M’)* %c~’v’c
1 12h’%={ [1– (Lf’)T~ (24)

It already has been noted that the interference associated
with the thickness of the airfoil has no effect upon the
longitudinal velocity gradient at the position of the airfoiI.
It will be seen later that this also is true of the interference.
associated with airfoil camber. Equation (24) thus gives
the total velocity gradient for the complete airfoil and wake.

The total presu.r e gradient at the position of the model
then is given by Bernoulli’s equation as

d
i?x

=_prvr d;

or, substituting from equation (24) and setting ~= 1.4,

dp
{

1+ 0.4 (M’)i ?rCd’#C

1
~= – [1– (M’)qm T (25)

It is apparent from the symmetry of the system of image
sources that at the center line of the tunnel the interference
between the wake and the walls has no effect upon the ve-
locity normal to the direction of the stream.

It is shown later in this report that the camber of the air-
foil does not affect the stream velocity at the airfoil. Equa-
tions (4) and (23) together thus give the total incream
in veloci~ for the completa airfoil and wake. The effective
or true velocity V at the model is therefore

“=v’1+[1-(i/)q3flA”+=Tc”l ’26){
It is evident that a correction to the apparent velocity in a

compressible flow implies corrections also to the apparent
density, dynamic pressure, Reynolds number, and Much
number. These corrections are readily obtained on the basis
of the usual assumption that the flow is adiabatic. It is as-
sumed that the correction terms are small as compared with
unity, so that squares and products of these terms may be
neglected.

The true density p at the model is connected with tho
apparent density p’ by the isentropic relation

{ [(v)-’]}+ ’27)
pep’ l–~ (airy ~

Substitution from equation (26) gives, after expansion aa an
ascending power series and neglect of correction terms higher
than the first order,

{

(M’)’ *a_ (M’)2[l+o.4(iW)~ ~cd,
‘=P’ 1– [1– (M’)q3fi 1– (M’)’ 1

(28)

The true dynamic pressure q=; PP is related to the

apparent dynamic pressure g’ by the equation

Q=’’(w)’

By meane of equations (26) and (28) this can be written to
the tirst order as

I
2– (M’)~ *a+ [2– (M’)q [l+o.4(il!f’)q ,Cd, ~29)

Q=~’ 1+ [1– (M’)q’fi 1– (M’)i 1

The true Reynolds number R is given in terms of tho
apparent Reynolds number R’ by the equation

‘=R’WW?
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where p and Pr me the coefficients of viscosity corresponding
to V rmd V’. According to von K&rm6n and Tsien (refer-
ence 11), the coefficients of viscosity are related to the cor-
responding absoluta tempemtwes by

I?or reversible adiabatic flow it can be shown that

G

I
T=T’ 1

-=(”’WHI
(30)

which after substitution from equation (26) becomes to the
first order for air (y= 1.4)

[
T=T’ l–

0.4(M’)2 0.4(M’)’ [1+0.4 (M’)q ,Cd, ~31)
[l_ (&qq3/z A“– 1– (~l)z

1

By means of th~e relations together with equations (26)
and (2s), the true Reynolds number may be written

,/

‘=R’l’+ii32w’”+[’-0”7(YuiT~”4(M’)’Tc4
(32)

The true MrLch number M is related to the apparent
Mach number M’ by the equation

‘=M’GW)

where V. and V.’ are the velocities of sound corresponding to
V and V’. Site the velocity of sound in a gas is directly
proportional to the square root of the absolute temperature
alone. this equation may also be written

‘=’’’(w)”

With the aid of equations (26) and (31) the true .Mach num-
ber then may be written to the first order

‘=M’{l+E%%&’”+

[l+o.2(M’)q [l+o.4(M’)q
l—(M’)~

Ted’
I

(33)

At low- Mach numbers, the terms containing rc~’ in the
correction equations are usually negligible ss compared with
the terms containing Au. At supereritiosl Mach numbers,
however, where the drag coefficient is very large, the terms
with 7c~’ are predominant.

Numerical values of the compressibility factors appearing
in equations (26), (29), (32), and (33) are given in table II.

Camber effect,-The theory-of the inlinitesimrdly thin,
cambered airfoil in free air is developed by Glauert in refer-
ence 12 (pp. s7-93). In this development the oamber line
is replaced by a sheet of continuously distributed, bound
vortices. Tho flow induced at any point on the camber line
by this system of vortic~ is obtained by integration and is
combined vectorially with the flow of the undisturbed stream

to give the direction of tho resultant flow. The distribution
of vorticity is then determined from the condition that the
resultant flow at all points on the camber line must be tan-
genital to the ~ber line.

In the actual calculation of the iuducbd velocity, it is
assumed that the vortices may be distributed along the
chord line rather than along the camber line and that the
induced velocity at any chordwise station on the camber
line is the same ss the induced velocity on the chord line at
the same station. If the origin of coordinates is taken at
the leading edge of the airfoil (fig. 2), with the positive
z-axis along the chord line and the positive y-sxis directed
upward, the induced velocity (o)f in rm incompressible fluid
at any point % on the chord line is

v

FmuEE z—MeanQvIIber lineinh ah.

(34)

where d~/dx is the vorticity per unit length at the point
z and c is the chord of the airfoil. The direction of this
veloci@ is normal to the x-axis.

Glauert (reference 7) hae shown that a first approxima-
tion to the veloci~ induced at any point by a simple vortex
in a comprwsible stream can be obtained by simply multi-
plying the velocity induced at the same~point in an incom-
pressible stream by the factor

(35)

where M is the Mach number of the undisturbed flow and @
the polar angle of the point in question m messured from
the direction of flow of the undisturbed stream. I?or point9
on the chord of an airfoil which is inolined at a small angle
to the direction of the undisturbed stream the polar angle
@is small, and the factor (35) is sensibly equal to

If it is assumed that the effect of a vortex sheet in a com-
pressible fluid may be obtained by superposing the effects
of elementary vortices, the veloci~ induced at any point
a on the chord line in a compressible fluid is

(36)

If the undisturbed velocity of the free stream is taken
equsJ to the true velocity V at the airfoilin the tunnel,
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the condition that the resultant flow shall be tangential to
the camber line requires that, for all points on the airfoil,

(37)

where dyJah is the slope of the camber line at % and a is
the true angle of attack; that is, the angle the undisturbed
stream makes with the chord line in free air. (See fig. 2.)
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The problem of the iniinitwimally thin, cambered airfoil
in a two-dimensional-flow tunnel can be investigated by the
method of images; that is, the effect of the upper and lower
walls of the tunnel can be simulated by introducing an
infinite lattice of alternately inverted but otherwise identical
image airfoils above and below the original airfoil, as shown
in figure 3(a). By this artifice the direction of flow at the
position of the upper and lower walls can be made to coincide
with the plane of the walls, which is the required condition
of flow. As in Glauert’s analysis of the airfoil in free air, the
camber line of the airfoil and of each of its imag= is replaced
by a sheet of continuously distributed vortices, the vortex
distribution of all sheets being identical in magnitude but
alternately reversed in sign. The flow induced at any point
on the camber line of the original airfoil by the entire vortex
system is then obtained by integration. As before, the dis-
tribution of vorticity must be determined so that the rwult-
ant of the induced velocity and the stream velocity is
tangential to the camber line of the airfoil.

For the detailed calculation, the coordinate system is
taken as shown in figure 3(b). The origin of coordinates is
taken on tlm center line of the tunnel at the leading edge
of the airfoil. The positive z-axis extends downstream par-
allel to the undisturbed flow, and the positive y-axis is

directed upwards. It is assumed that the vortices may be
distributed along the x-axis and the induced velocities calcu-
lated at points on this axis. This arrangement is somewhat
diiTerent from the system employed for the airfoil in free
air, where the z-axis waa taken along the chord line; how-
ever, since the angle of attack is assumed to be small, tlm
difference is of no consequence.

It is evident from figure 3(b) that, for an airfoil midway
between the upper and lower walls of the tunnel, the axial
velocity induced at any point on the z-axis by any one’
image is nullified by the velocity induced by the corres-
ponding image on the opposite side of the tunnel. It
follows that airfoil camber does not aflect either the true
axial velocity or the longitudinal pressure gradient in the
tunnel at the position of the model.

The vertical velocities induced at any point on the z-axis
by any one image and its counterpart are, however, addi-
tive. Thus, for corresponding imagea situated at mh and
—mh, respectively, the vertical velocity (u’J t induce d at
the point % in an incompressible fluid is

(u’rJ,=2(–1)~ fw’.-;)&
o 2n-r.

or

J

, d+ (z–z,)&
(ti,m)i=: (–l)m

o (Z—%)2+ (mh)z

where dI”/& is the vorticity per unit length at
in the tunuel.

It will now be assumed that the chord of the airfoil is
reasonably small in comparison with the height of the tumml.
This being the case, the approximation

(38)

the point x

(-–d’+ (mh)% (mh)’

is sufllciently precise for purposes of this analysis, and
the term (z–G)’ in the denominator of equation (38) may
be neglected.

The vertical velocity (u’,) ~ induced by all the images is
then found by superposition as

(39)

This equation can be corrected for the effect of compressi-
bility by means of expression (35). If, as was assumed, the
chord of the airfoil is reasonably small aa compared with the
tunnel height, the polar angle @ of any point ~ on the airfoil
with respect to any point z on an image is nearly o right
angle, so that in this case the factor (36) is sensibly equal to

The vertical velocity induced in a compressible stream by
all the images is then
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(40)

The verticrd velocity e’,, induced at a point G by the
vortex sheet belonging to the airfoil itself, is given by
equation (36) if I“ and V’b are substituted for I’ and o,
respectively.

The total vertical induced veloci@- o’ at any point % on
the airfoil in the tunnel is then the sum of o’, and o’b; that is,

Ji=3Z’1
d=

H2W o 1~–& (z—q) !?;’ & (41)

The condition that the resultant of the induced velocity
and the true axial velocity at the airfoil shall be tangential
to the camber line requires that, at all points on the camber
line,

(42)

where a’ is the angle of attack of the airfoil in the tunnel;
that is, the angle the chord line makes with the center line
of the tunnel. The true velocity V rather than the apparent
velocity V’ is used in equation (42), since the vorti system
used to represent the cambered airfoil in the tunnel is actually
operating in a stream of velocity V when the airfoil thickness
and wake are present.

RELATIONS BETWEEN CEAEAC3?EEISTIC9OF AIRFOILLN TUNNEL AND
IN FEBE AIR

The preceding sections provide the basic information
required for the development of relations between the charac-
teristic of the airfoil in the tunnel and in free air. The
relations for the lift and moment coefficient.s and angle of
attack are derived from the equations of the preceding
section by an extension of the method of Fourier series
employed in Glauert’s theory of thin airfoils (reference 12,
pp. 87-93). To this end, the vorticity distributions for the
airfoil in the tunnel and in free air are ench represented by a
trigonometric series, the two series being similar in form but
having undetermined coefficients. By means of the equa-
tions of the preceding section, general relations are found
between the coefficient of the two series. These general
relations are then specialized to meet the requirement that
the ~irfoil shall have the same value of the cotangent term of
the series in the tunnel and in free air, this requirement being
shown ti be necessary b assure that the essential character-
istic of the pressure distribution will be sensibly the same
in both cases. By means of the relations between the
coefficients, expressions are then derived for the lift and
moment coefficients and angle of attack of the airfoil in free
nir in terms of the characteristics measured in the tunnel.
The corresponding drag coefficient in free air can be found
from the drag measured in the tunnel by subtracting the
pressure drag caused by the interference between the walls
and the wake and referring the remaining drag to the true
instead of the apparent dynamic pressure. Finally, a
method is presented for correcting airfoil pressure distribu-
tions for the effect of tunnel walls.

To carry out the analysis, points on the airfoil are defined
by a new coordinate o such that

Z=;c(l —cos e) (43)

and

dz=; csinoti (44)

The distribution of vortici~ along the chord of the airfoil
in free air is represented, after Glauert, by the trigonometric
swim

I

.
g=2v & cot: efqfl. sin J@

n= 1
(45)

Equation (36) then gives the induced velocity at any point
6’ on the airfoil as

{
+=- –~+~1 A= cos ~]

and equation (37) for the slope of the mean-camber line
becomes

dyc
~=a–~&+d~W%’A. cos ti [46)

n-l

The coediicienta are then given by the relations

For the airfoil in free air the coe5cienti A, for n~ 1 are
thus functions of the camber-line shape only and are inde-
pendent of the angle of attack. The coeilicient & is a
function of both the camber-line shape and the angle of
attack.

The chordwise lift distribution in free air is given by

which after substitution
in coefficient form as

from equation (45) can be written

Equation (48) illustrates the well-known fact that in free
air the chordwise lift distribution consists essentially of
two distinct psxts. The one part, contributed by the sine
terms and generally referred ta as the basic lift distribution
(reference 13), depends in magnitude and form only upon
the shape of the mem-cwnber l&e. The other part, defined
by the cotangent term and referred to as the additional lift
distribution, is iixed in form and depends in magnitude upon
the angle of attack as well as upon the cambm-line shape.



....- . ... .

164 “ REPORT NO. 7 82—NATIONAL ADVISORY

The distribution of vorticity for the airfoil in the tunnel is
represented by

{
g=2v AJcot; o+g&inn9

1
(49)

n-l

Sub stitution of this expression, together with expressions
(43) and (44), into equation (41) gives, after integration,

)$=J=W{ -4+&@ &40’+;A2’ +

[ 1
A,’–&w (2A0’+AI’) C050+

&L’ COsti]

where u is as defied by equation (2). Equation (42) for
the slope of the mean-camber line thus becomes

dye~=af– J=ZP [4’–*M (&’+; A,’)]+

Jrm p:–~w (24+ A1’)] cm e+

~~,A~’ cm no (50)

The coefhcients in this case are given by the relations

(51)

Thus for the airfoil in the tunnel the cmilicient &’ is a
function of both the angle of attack and the shape of the
cmnber line, but the functional relationship is altered ilom
what it -was in free air by the inclusion of terms proportional
to U. Furthermore, because of the appearance of the term
involving AO’ in the second of~equations (51), the coefficient
A< is in this case also a function of the a@e of attack, w
well as of the camber-line shape. Since Ao’ appears in this
equation multiplied by the factor U, the dependence upon the
angle of attack is, however, secondmy as compared with
the dependence upon the shape of the camber line. As in
the case of the airfoil in free air, the coeilicients A=’ for
n =2 are functions of the camber-line shape only.

The chorihvise lift distribution in the tunnel is given by

or incoefikient form,

~*_~ (LL’
{ 1

—=4&k. ot;o+~AJ&no “–q ok (52)
n=l

In
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writing this equation the streamwise velocity gradient
which results from the wall-wake interferenm (equation
(M)) is ignored. It can .be shown that the inclusion of this
variable would give rise tQ correction terms of the order Ucd~.
Terms of thiS order are usually small as compmed with tho
terms of order u and 7c~’ considered in the theory nnd may
therefore be neglected.

It is apparent from equation (52) that, as in the cnsc of
the airfoil in free air, the lift distribution in the turuml may
be divided into two components. Now, however, the com-
ponent which depends upon the angle of attack includes both
the cotangent term and the first sine term. The componont
which is a function of the camber-line shapo alono comprises
the sine tams corresponding to n~ 2. Again, thoso two
components could be denoted by the terms ‘i additional” nnd
“basic” in the sense previously employed; howovor, sinco
the phrase “additional lift” already is so firmly established
with referenco to the distinctive cotangent term done, this
usage does not appear advisable in the present case. I?or
this reaaon, the terms of the series will be referred to by
reference to their form or their position in the series.

Since it is the same airfoil which is being considered in
both cases, equations (47) and (51) lead to the following
general relations between the coefficients in free air and in

(53)

In order to use these exprwaious to relate the chmactoris-
tics of the airfoil in free air with those in the tunnel, it is
necessary to choose some quantity or condition which will be
maintained the same ia both cases and relate the remaining
quantities in accordance with this choice. lf it were pos-
sible, the ideal procedure would be to keep nll the mrody-
namic coefficients unaltered and to detenni.ne a correspond-
ing relationship between the angle of attack in the tunnel and
in free air. To do this it would be necessary to keep all
pressure and frictional forces the same in both cases, which
can be accomplished only if the pressure distributions are
identical. This would require that each of the coefficients
Amin equation (48) be equal to the corresponding coefficient
A.’ in equation (52). It is apparent from the second of
equations (53), however, that this requirement cannot, in
general, be satisfied.

Although the pressure distribution cannot be maintoincd
completely unaltered in the transfer from the tunnel to free
air, the general relations (53) can be specialized in such a
way that the essential character of the distribution is un-
changed. It is apparent that the component of lift contribu-
ted by the first, or cotangent, term in equations (48) nnd
(52) is diilerent in form from that contributed by tho series
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of sine terms. The cotangent component hsa an infinite
value at the lending edge (o= O) and a relatively large chord-
wim gradient of lift over most of the chord of the airfoil. The
sine-series component is finite at all points and, for airfoils
ordinarily encountered in practice, has a relatively small
chordwise gradient, except possibly in the immediate vi-
cinity of the led.ing or trailing edges. The cotangent
component with its in.iinite peak pertains, of course, only
to the hypothetical airfoil of inihitmimsl thiclmesa and
zero leading-edge radius. For all real airfoils, the lift at the
leading edge can never be infinite; however, even in this
instance the lift distribution is characterized by a component
the form of which is peaked near the leading edge and the
magnitude of which varies markedly with the angle of attack.
The magnitude of this component is a primary factor in
determining the character of the pressure distribution, and
even CLrelatively small change @ magnitude may cause con-
siderable change in the minimum pressure and in the chord-
wise pressure gradients attained on the surface of the airfoil.
I?urther, the aerodynamic characteristics which depend upon
theso quantities, particularly the prdle drag, maximum lift,
and critical compressibility speed, will be correspondingly
rdtered. It follows that properly to correct airfoil data
obtained in a wind tunnel to conditions in free air, the cor-
rected quantitiw should correspond to the same magnitude
of the peaked lift component as exists on the airfoil in the
tunnel.

The requirement that the peaked component of lift on
tlm real airfoil shall be the same in the tunnel ad in free
air can be expressed with reference to the assumed airfoil
of infinitesimal thiclmew and camber by setting ~ equal
to&’ in equations (53). The fit of these equations, which
relates the angle of attack in the two conditions, then
becomes

(“=”’+* 4+++
rmd the relations between the coefficients are

fjp~

A,= A,’–—~_”w (2A0’+AI’)

Ag=A~’

----

A,=A?

(54)

(55)

Substitution from equations (55) into equation (48)
give9

I
P=4 Ao’ cot;0 –—~_uw C4’+A1’) sino+jh’ sinno

n-l 1

or

p=p*_A-
l_m (2A0’+A1’) sin o (56)

Thus, if the angle of attack in the tunnel and the angle of
attack in free air arc such as to satisfy equation (54), the

S.4311C-5&12

chordwise lift distribution will differ by an amount defied
by the second term on the right-hand side of equation (56).

The lift coefficient for the airfoil in free air is

“=IP’(:)

which, after substitution from equations (44) and (48), can
be integrated to give

CZ=?r(2Ao+Al) (57)

The quarter-chord-moment coefficient is

‘.:=IW-$’(:)
which becomes after integration

Cmg= —; (A1—Ai) (58)
4

In usual wind-tunnel practice, the measur&d coefficients
are referred to the apparent dynamic pressure g’. The lift
distribution over the airfoil in the tunnel in terms of q’ is

Substitution from equation (49) gives

(59)

The lift and moment coefficients of the airfoil in the tunnel
as referred to the apparant dynamic pressure are then,
respectively,

CJ’=IP’’(-9=”5 ‘24+A1’) (60)

and

c=;=Ip’(i-:)’(f)=-:; (A’-A~’) ’61)

Relations between the coefficients in free air and in the
tunnel can now be found with the aid of equations (55).
Substitution of values horn these Qquations ink equatinn
(57) gives

( i=)cl= i?42f&’+A1’) 1—

“’%(l-*)

Substitution from equation (29) and neglect of correction
terms of higher than the fit order then give

{

2— (M’)i
c,=c{ l–&4–[l_ (M,) SEAu–

[2– (M’)q [l+o.4(M’)q
1— (M’)z

Ted’
1
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From emmtion (33) it can be seen that, to the&t order, M. .
may be replaced by-M’ in this equation. The fhl equation
for the correction of the measured lift coeilickmt is therefore

I
2— (M’)z Aa

Cl=cl’ 1‘*–[1– (M~)~3@ –

[2– (M’)q [1+0.4 (M’)q
1— (M’)q Tea’

I
(62)

Similarly, substitution of values from equations (55) into
equation (58) gives

c%
2

= –: (A,’–A2’)+; (2A0’+ZL’) *M

. d
( )

C.A’+>l’ “*j@
fl.

To the order of approximation previously employed, the final
equation for the correction of the measured moment coefE-
cient cm be written

cm+=c.:{P&&f$+

[2– (M’)~ [1+0.4 (M’)q
1

(63),ca’ +cz’4[&~)211— (~l)z

The corresponding angle of attack in free air can be found
from equation (54). Combination of equations (60) and
(61) giVeS

II
c1’+4cmo ’

&’+; L42’=$ z= 7

To the first order, equation (54) then giv~ for the corrected
angle of attack in radian measure

cy=a~+ 2=mA’+4cm%’l(64a)

or in degrees

ff=aJ+
2.=~{c’+4cm%’l ‘Mb)

Numerical values of the compressibility factors appearing in
equations (62), (63), and (64) are given in table II

It should not be implied from equations (64) that the
general inclination of the stream at the position of the airfoil
in the tunnel is actually di.iTerenthorn what it would be if the
walls were not present. The equations indicate rather that,
with regard to the magnitude of the cotangent component of
lift distribution, an airfoil at a given angle of attack in the
tunnel behaves as though it were at a diiTemnt angle in free
air. This difference occurs because the tunnel walls give rise
effectively to a change in the curvature of the strewn at the
position of the airfoil.

As was indicated previously, the essential character of the
pressure distribution over a given airfoil will be the same
in the tunnel and in free air, provided the magnitude of

the cotangent lift component is the same in both casca; that
is, provided the angles of attack are such as to satisfy
equations (64). The exact shape of the pressure distribu-
tions, however, will still diiler slightly for two reaaons:
(a) The interference between the lift and the tunnel walls
causm a difhrence in chordwise lift distribution as required
by equation (56), and (b) the interference between the woke
and the walls gives rise to a longitudinal pressure gradient
defied by equation (25). The effect of t]me two influmcoa
upon the remaining airfoil characteristic, the proiile-drag
coe5cient, must be considered.

As given by equation (56), the chordwise lift distributions
in the tunnel and in free air dHer by an amount

AP=P*— P= 4C~ (2~+Ai’) sin o

which, by virtue of equation (60), may be written to tlm
tit order as

AP=~ i~~ c; ~ dJ (66)

The changes in peak pressure and pressure gradient brought
about by this increment of lift distribution, unlilm tho
chang~ which would accompany even a minor alteration of
the cotangent lift component, are ordinarily small. At low
Mach numbem the drag depends primarily upon the chm-
acter of the flow in the boundary layer, and, since this flow
will not ordinarily be altered gnmtly by these small chnngoa
in the pressure distribution, the increment of lift distribution
should have only a small effect upon the profle drag. At
high Mach numbers the ch.g is determined primarily by the
total-head 10SSWin the shock waves which appear after the
critical lMach number is reached; that is, after tho local
speed of somd is obtnined at the minimum pre9sure point on
the airfoil. The critical h!lach number is usually reduced by
the change in peak pressure accompanying the change W
in lift distribution, but it cm be shown that this reduction
is ordinarily very small. It is reasonable to expect that the
change in profile drag at a given snpercritical Mach number
is correspondingly small. These changea are discussed in
further detail later in the report, but for the present it may
be assumed that the diilerence in chordwise lift distribution
between the tunnel and free rLirhaa only a negligible ofloct
upon the prd.le drag.

For usual airfoils and drag coefficients, the longitudinal
pressure gradient defined by equation (25) is also small, and
its effect upon the bound~-layer flow and hence upon the
frictional drag of the airfoil may be neglected. It will,
however, increase the pressure drag by an amount which is
comparable to diilerences already retained in the corrections
to the lift and moment. This increaae in pressure drag
must be subtracted from the drag measured in the tunnel to
obtain the true profile drag of the airfoil in free air.

Glauert has shown (reference 2, pp. 62-63) that in an
incompressible fluid the drag experienced by an airfoil as
the result of a streamwise pressure gradient is, in the nota-
tion of this paper,

(66)
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In appendix A, it is shown that to the order of the linear
theory the relationship between drag and stremnwise pres-
sure gradient is unchanged by the effect of compressibility.
However, the use of factor A in equation (66) implies, m in
the case of the velocity correction due to thiclmess, a second
order correction which should properly be modified for the
effect of compressibility. This modification which has been
determined by Ludwieg, reference (10), is not included here
for tho reason previously cited. Substitution in equation
(66) of dp/dx from equation (26) then gives for the drag due
to the interference between the wake and the walls

AD=’’’di=%%?l’”

The true profile drag of the airfoil in free air is then

D= D’–AD

{
1+0.4 (M’)2 Au

“’’~’c 1–[1– (M’)q$ @l

and the corresponding drag coefficient referred
dynamic pressure is

D
()1

=–=C.’ $ l+o.4(M’)~ Au
cd q’ 1–[1 – (M’)q’ fil

to the true

Substitution from equation (29) gives for the final correction
to the measured drag coefficient

{

2— (M’)z
‘d=c~f l—

1+0.4 (M’)’ Aa_

[Fu@YP ‘“–~

[2– (M’)q [1+0.4 (M’)7 ~cd,
1– (M/)* I

(67)

It will be noted that, of the two correction texms involving
AC in this equation, the first appears as a result of the change
in dynamic pressure occasioned by the interference between
the wrdls and the airfoil thiclmess; the second represents the
effect of the pressure gradient induced by the interference
between the walls and the wake. The correction term con-
taining ?cd’ appems aa a result of the change in dynamic
pressure caused by the wall-wake interference. Numerical
values of the functions of M’ which appesr in equation (67)
am given in table II. The corrected drag coefficient cm.
responds, of course, to the corrected lift ~d moment CO-
efhcients as given by equations (62) and (63) and to the
correckd angle of attack aa given by equation (64a) or (64b).

The drag correction of equation (67) was determined
particularly for draga measured with a balance and, ss de-
rived, is not necessuily correct for drags measured by the
wake-survey method. It can be shown, however, from
theoretical considerations of momentum and continuity in
rL two-dimensional-flow tunnel that for normal ratios of
airfoil chord to tunnel height, the ordinary type of wake
survey derived for free-air conditions gives, when applied
in the tunnel, rLvalue of the drag equal to that measured
by tho balance except for a negligible difference of less than
one-half of one percent. Equation (67) may thus also be

used to correct the drag coefficients determined by the wake-
survey method.

It should be noted that no correction to the d~~ has been
made for any prwmre gradient which may exist inherently
in the tunnel as a resxdt of the stwamwise growth of the
boundsry layer on the tunnel walls. Most modern tunnels
are constructed so that this pressure gradient is sensibly
zero; however, if such a gradient does exist and its magnitude
is known, an approximate correction to the airfoil drag can
be made by meane of equation (66).

There remains the necessity for correcting the mewnred
pressure distribution over the surface of the airfoil. The
pressure at any point on the airfoil is conveniently expressed
by the pressure coefficient S’, defined by

or by the pressure co&cient Pi defined by

p,=Pz!

(68)

(69)

where p 1is the local static pressure on the surface of the air-
foil and H, p, and g are, respectively, the total head, static
pressure, and dynamic pressure of the undisturbed strem.
As indicated in referauce 14, in a compressible stream,

H=p+q(l+v) (70)

where (1 +~) for air (~= 1.4) is defined by the series

l+ T=l+y+g+&+ “ “ “ (71)

M being the Mach number of the stream. From these rela-
tions it is readily shown that

s*=(l+q)–Pt (72)

A curve of (1 +T) vemus M, ss calculated from equation
(71), is given in iignre 4.

In referen~ 6 a method is presented for the determination
of the pressure distribution around sn airfoil in an incom-
pressible stream when the lift distribution along the chord
and the pressure distribution over the bsse proiile are known.
The upper- and lower-surface pressures at any chordwise
station z are given in coefficient form by

[(l–Pf)+&J
pu=~=l–

(1–P,)

pL=pL—p ~ [ 7
(1–P,)–;P

— .—
!l (1–P,)

(73)

where P~ is the pressure coeiEcient on the bsse proiile at z,
and P is tho coefficientof lift per unit of chord at z. By
following the bssic reasoning of reference 6 and assuming
that the induced velocities at the surface of the airfoil are
small as compared with the velocity of the undisturbed
stream, it is readily shown that equations (73) may also be
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applied to the pressure distribution in a compressible stream.
In such application, the values of Pu, P., Pf, and P must all
cmreapond, of course, to the same free-stream Mach number.

The measured pressure distribution is now readily cor-
rected for the effect of the tunnel walls. It is only necessary
to refer the mensured pressure coefficients h the true instead
of the apparent dynamic prwsure and remove the effect of
the Iift distribution represented by equation (65). Strictly
speddng, correction should also be made for the pressure
gradient due to the wall-wake interference; however, in
pmcticd teats such correction is small and maybe neglected.
The detailed procedure is then as follows:

(1) The apparent upper- and lower-surface pressure
coe5cients

are obtained from the experimental results ior the various
chordwise stations.

(2) These pressure coefficients
dynamic pressure by means of the

are referred to the true
equations

SIJ”=SL7’(3=s4’-DG%J3fiA”
[2– (i’kf’)1 [1+0.4 (k.f’)1 Tc.’

1 – (w)’ I

(74)

(,)- ~{ -*flA”-
SL*=SL1 d _s I ~

[2– (fw)q [l+o.4(f&f’)q Ted,
1— (M’)z )

(3) The quantities (1—Pu”) and (l—PL*) are determined
in accordance with equation (72) as

l—Pu*=s”*—q

~—pL*=&*-~ 1

where q is determined by figure 4 for the
as given by equation (33).

(4) The chordwise lift distribution in the tunnel is found
from

(76)

true Mach number

p.=~h’ —Pu’=su*_sL*
q

(76)

(5) The chordwise lift distribution in free air is deter
mined from equation (65), which may be written

p=p*–
l—&y ‘g c;

where P, is given by

(77)

(78)

This quantity, which is termed the “interference lift distri-
bution,” is seen to be elliptic in form. V&h.msof P, at stnnd-
ard chordwise stations are given in table III.

(6) The quantity (1–P,), where Pf is the base-profile
pressure coefficient in free air, is given by the equation

(l–P,)=(l–Pf*)= (@”*; -)2 (79)

which is obtained by combining equations (73).
(7) The values of P and (1 –Pf) being known, the upper-

and lower-surface pressure coefficients Pu and PL are cleter-
mined from equations (73). If desired, the corresponding
codicients Su and SL can be found from equation (72).

The corrected pressure distribution obtained by this
method corresponds to the corrected angle of dtack as given
by equation (64a) or (64b) and to the corrected lift and
moment coefficients as given by equations (62) and (63).

It has been mentioned previously that the correction to
the angle of attack appearing in equations (64) does not
represent an actual rotation of the stream direction. This
fact is implicit in the derivation of the equations, but it can
also be demonstrated by simple considerations of forco and
momentum. For this purpose it is sufficient to consicler a
simple incompressible potential flow in the tunnel and ignore
the effect of the profde drag. Awmme for the time being
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tlmt, because of the interference between the airfoil and the
tunnel walls, the general direction of the stream at the air-
foil is inclined from its origimil direction parallel to the
tumel walls. II’or potential flow the resultant force acting
on the airfoil must be at right angles tQ the local direction
of tho stream. The airfoil thus would be acted upon under
the resumed conditions by a component of force parallel to
the center line of the tunnel and would in reaction exert an
equal and opposite force on the flow. Since the tunnel walls
wmnot in a potential flow exert a force parallel to the center
line, this longitudinal force would have to be bahnced by a
difference of pressure or momentum between two stations
in the tunnel, one upstream and one downstream from the
airfoil. If the stations are taken far enough from the air:
foil that its induced velocities me negligible, conditions
across the tunnel are uniform at each station. It then fol-
lows from considerations of continuity of the incompressible
flow in the tunnel that the conditions at the two stations are
identical, and no ~erenw of pressure or momentum is
possible. Thus the original assumption of a gened rota-
tion of the stream direction at the position of the airfoil is
untenable. This conclusion is not changed by the effects of
fluid compressibility. Furthermore, the fact that the in-
troduction of the profile drag and the accompanying wake
causes a pressure difference between the two stations like
wise does not alter the result, as the wake effects are con-
sidered in the theory to be superposed on the potential-flow
field. Thus, the angle correction appearing in equations
(64) must be due to some cause other than a general inclina-
tion of the stream. As previously pointed out, it is actually
due to an effective change in the curvature of the stieam at
the position of the airfoil and is a direct consequence of the
requirement t that the airfoil in this stream shall have the
mme cotangent component of lift distribution as does the
airfoil in free air. These considerations are important in
the proper interpretation of drag measurements horn a two-
dimensional-flow tunnel.

In the development of the correction to the measured drag
coefficient, it was assumed that the increment AI? in chord-
wise lift distribution between the tunnel and free air has
only a negligible effect upon the proiile drag. A better idea
of the nature of the effect can be had by further examination
of the diilerence between the two cases. It follows from
equations (66) that, if the angles of attack in the tunnel and
in free air are related as required by equation (54) or (64),
the transposition of a given airfoil from free air to the tunnel
is equivalent to increasing the coticient Al for the airfoil
in free air by an amount

AA,=A:– AI=*W (2A0’+AI’)

which can be written to the fit order as

Aa can be seen from equation (46), this can be accomplished
by maintaining the angle of attack unaltered in free air and

changing the ordinate of the mean-camber line at every
point by an amount Ay, such that

(80)

The value of AyOas a fraction of the chord is then

%=s’%)’(:)+
which after substitution from equations (44) and (80) can
be integrated to obtain

The constant of integration C is determined by the condition
that A’YJc=O at 0=0 and O=r. The equation for the
change in the camber line then becomes finally

AyC

:Elz4($-(w
— .—

c
(81)

This is the equation of a parabola with vertex at the mid-
chord point and has the same form as the equation for the
camber line of an NACA conventional airfoil with maximum
camber at the midchord point (reference 15). The maximum
change in camber is

(82)

Thus, if the angles of attack of the airfoil in the tunnel and
free air are adjusted as required by equations (64), the wall
interference in the tunnel has the same effect upon the chord-
wise lift distribution as would an increase in camber in free
air.

As a possible instance of a test for the determination of the
drag of an airfoil of large chord at a low Mach number and
low lift coefficient, consider the case of an airfoil in a tunnel
providing a chord-height ratio of 0.5. The value of u is
then 0.051. Assume that the angle of attack a’ in the tunnel
is adjusted as required by equations (64) to correspond to
an angle a giti” a Iift coefficient c1 of 0.3 in free air. As-
suming that the Mach number is sufficiently low that the
effect of compressibility may be neglected in computing the
tunnel-wall corrections, the change of maximum camber re-
quired in free air to duplicate the effect of the tunnel walls is
given by equation (82) as

()&c _=& (0.051) (0.3)=0.0012

An estimate based upon experimental data has been made of
the effect upon the profile drag of a change in camber of
this magnitude for an NACA conventional airfoil of moderate
camber and 15-peicent thickness with maximum camber at
the midchord point. The result indicates that neglecting
the effect upon the proiile drag of the change in lift distribu-
tion caused by the tunnel walls leads in this -e to an error
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inthe final corrected drag caefhcient of less than 0.0001.
This is within the usual limits of experimental accuracy.
The correction terms included in equation (67) amount in
this instance to approximately 0.0004. If the chord-height
ratio were increased to 1.0, the error in the drag coefficient
would be increased to 0.0004, which is well outside the limits
of experimental accuraoy. This indicates the desirability
of limiting the chord-height ratio if accurate measurements
of the profile drag are desired, even at low values of the lift
coefficient and Mach number. At higher values of the lift
coefficient or Mach number the permissible chord-height
ratio must be reduced correspondingly.

The foregoing comparison is based upon the speciiic case
of an airfoil with mtium camber originally at the mid-
chord point and is not nwessmily applicable to other typ-
of airfoils. For families of airfoils which have a smaller
variation of drag &th camber than do the NACA conven-
tional sections, the error introduced by neglecting the effect
of the change in lift distribution is correspondingly 1-.
In any event, satisfactory accuracy can be obtained in the
measurement of drag at low lift coeilicients and Mach num-
bers by keeping the chord-height ratio within a suitable
limit-say 0.7. A possible exception is an airfoil having an
essentially flat pressure distribution in the region of tran-
sition from lami.nar to turbulent flow in the boundary layer.
In such a case the changes in pressure gradient may shift
the point of transition and noticeably altar the profile drag;
however, for any such sensitive airfoil, alterations from this
source are no more serious than similar changes which may
accompany the small variations in pressure distribution
caused in any practical application by irregularities in
construction.

Some measure of the effect of the increment AP in chord-
wiae lift distribution upon measuremerits of airfoil charac-
tmietics at high Mach numbers can be obtained by calcu-
lating the change in critical Mach number caused by this
increment. Such a calculation has been made for an airfoil
with minimum pressure originally at the midchord point.
Since the increment AP is a maximum at midchord, this
represents the worst possible case as regaxds the change in
critical Mach number. For a chord-height ratio of 0.25,
which is considerably larger than that ordinarily employed
in twts at high Mach numbers, the critical Mach number
was found to be reduced by approximately 0.001 at a lift
coe5cient of 0.3. A change of this magnitude is insigdi-
cant. It may be expected that the accompanying change
in the aerodym.mic coefficients in the viciniti of the critical
Mach number will be correspondingly small.

THE PHENOMENON OF CHOKING

Consider the compressible adiabatic flow of a fluid in an
elementaq- stream tube of varying area A;, as shown in
figure fi(a). Continuity of flow requires that the product
PIVIAIbe constant,where PI, VI, and Al are the local values
of density, velocity, and area, respectively, at any station
along the tube. In consequence, the logarithmic derivative
must vanish; that is,

(83)

A. Al

PI —4=
Pa

(a)

~ b
Jll

~ ——. — —— .—— —

J1

Jf 1

P) .—— —.— . .

Fmurm5.-Vehxdty diatributlmh m elementarystrenmtube.

Bernoulli’s equation for comprwible flow requires that

(84)

where pl is the local pressure. Defining V,z as the local
veIocity of sound, then

k’= Vc:
dp,

so equation (84) becomes, after substituting the value of
dpl in that equation,

w-here Ml is the local Mach number.
Substituting this relation into equation (83) gives

(85)

From this well-known relation it is seen that at subsonic
speeds the usual behavior associated @h incompressible
flow is obtained; namely, that as the area increases the ve-
locity decreases. At supersonic speeds, however, the be-
havior is reversed in that as the area increases the velocity
increasea. When the local Mach number is unity it is seen
that dA=O; that is, if the velocity of sound is attained in the
tube it can only be attained where the area has its minimum
value.

When the local velocity of sound is attained at the mini-
mum area section, the local Mach number at any othm sec-
tion, determined by the ratio of the area at that section to
the minimum area, may be less or, in some cases, grmter
than unity depending upon the conditions promoting tho
flow in the tube. The nature of such flows can be studiwl by
considering the change in the character of flow in the stream
tube of figure 5(a) as the downstream pressure px is de-
creased with respect to the upstream pressure pl. If
PI-P2 is small so that completely subsonic flow is maintoinocl
in the tube, the nature of the velocity variation along tho
tube is that usually associated with incomprtiblo flow as



WALL IIW’DRFE~NCE IN

SeOR in curve I of figure

A TWO-DIi?iD3NSIONAL-FLOW WIND TUNNEL, CONSIDERATION OF EFFECT OF COMITtESSIBILITY 171

5(b). When pl-p~ is incrwwed so
that sonic speed is just reached in the minimum area section,
tlm variation of velocity along the tube becomes that shown
in curve IX hy further decrease of the pressure pl cannot
alter the flow upstream of the minimum area, since the velo-
city at the minimum section cannot exceed the velocity of
sound. The only effect of decreasing the downstream pres-
sure is to promote a supersonic flow region downstrew of the
minimum area, as shown by curve III of figure 5(b). This
region is terminated by an abrupt return, through a com-
pnwsion shock wave, to subsonic flow. The position of this
terminal shock wave must be such as to bring about the
necessary convmsion of kinetic to thermal energy that is
required to promote the downstream pressure pl. For pres-
ent pnrposea, the most important point concerning the flow
as described is that when the velocity of sound is attained
at the minimum area section, no further increase in the
flow rate can be made regardless of the extent of the super-
sonic flow region downstream of this section. When this
mtium flow rate has been reached, the stream tube is
said to be “choked.”

What has been said concerning the choldng of a single
stream tube appliea to the complete system of stream tubes
past an airfoil mounted in a two-dimensional-flow tunnel,
as shown in figure 6. That is to say, when the velocity of

~ouFtE 6.–LfoH ofdo m?edat thefxeitfonof theafrfoilafterohoklng

the undisturbed flow far upstream in the tunnel reaches a

certain value, sonic velocity is attained at the point of mini-
mum area of each elementary stream tube betweau the airfoil
and the upper wall of the tunnel. It is important to note
that the locus of the points of minimum area of the separats
stream tubes does not necessarily coincide with the shortest
line between the airfoil and the upper wall. This is illus-
trated in figure 6, where the line A represents the short&
distance between the airfoil and the wall. If the conditions
of flow were uniform across the stream at each chordwise
station, the flow between the airfoil and the wall would be
the same as in a single elementary stream tube, and sonic
velocity would neceasdy be attained along line A. In the
actual case, however, the flow is two-dinmmsional, and sonic
veloci~ is attained along some line, such aa line B, not coin-
cident with A. A similar situation exists in the space
between the airfoil and the lower wall of the tunnel, where
the sonic velocity is attained along some line D. As before,
this lirm does not necessarily coincide with line C, the short-
est line which can be drawn from the lower surface of the
airfoil to the lower wall. (In order to avoid an apparent
contradiction with the requirements of continuity, it must
be kept in mind that the velocity vector is not, in general,
perpendicular to either lines A and C or B and D.) Sonic

speed is generally not attained coincidentally along lines B
and D. Once it is attained along both thwe lines, however,
the rate of flow past the airfoil in the tUMd can undergo no
further increase. The Mach number of the flow ahead of
the airfoil then has its maximum attainable value. This
value is described as the ‘(apparent choking Mach number.”

In practice, the lines of sonic speed lie very dose to the
lines def3ning the shortit distance between the airfoil and
the tunnel walls. For purposes of analysis, it will be as-
sumed that they are coincident, that is, that lines B and D
coincide; respectively, with lines A and C. Under these
conditions, the calculated rata of flow in the tunnel (which
must in any event be equal to the rate of flow across lines
A and C) will be somewhat greater thrm that which actually
exists when the linw B and D have their true positions.
The assumption of unidimensional flow will thus lead to a
computad choking Mach number, which is slightly greater
thsm the theoretically correct value.

On the basis of the foregoing assumption a relationship
between the model size and the choking Mach number cam
be obtained from elementmy considerations. The veloci~
V’ and density p’ of the flow far forward of the model, where
the cross-sectional area is A’, are constant across the stream.
The velocity V= and densi~ p.across the sonbspeed lines
B and D of figure 6, where the area has the minimum value
Am, are again constant across the stream. The velocity
V= is the local sonic speed v% so that the equation of
continui@- becomes

p’V’A’=pmVc~Am

Assuming adiabatic relations, the density and velocity
terms can be related to the Mach number far upstream,
which is now the apparent choking Mach number. The end
r~ult is that the ratio of the area of the undisturbed stream
to the minimum flow area can be expressed in terms of the
apparent choking Mach number M’* as

~- [(fM’*)’–l] a#m=&h [1 +@
}

(86)

The area ratio is clearly

A’ h_—
~.–h–~

where h is the tunnel height and tfl the projected thickness
of the airfoil normal to the flow direction. For reasons
which will be evident later, the projected thiclmws in this
relation will be replaced by an “effective” thiclamw td.

Taking the value for y for air as 1.4, equation (86)
becomes

M’d
*=1– ~+(M,d),_l

[ 1’

(87)

6

In figure 7, the ratio t~h is plotted as a function of the
apparent choking Mach number. The region above the
curve represents an impossible state of flow. & a matter
of interest the results are shown for the supersonic- as well
as the subsonic-flow regime, although for the purpose of this
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report only the subsonic choking Mach numbers will be
considered. —

In writing equation (87), the projected thickness was
replaced by an eilective thickness. If choking occurred m
was assumed in the preceding a,nalysis, then the effective
thickness determiningg ohoking would be, of course, the pro-
jected thickness. In any real case, although the eflective
thickness may never be less than the projected thickness, it
may be greater for two reasons. First, if the angle of attack
is sufhciently large in absolute value, one of the lines B or
D may move downstream of the trailing edge because of the
continued contraction aft of the &foil of the portion of the
stream passing that line. Second, she on any aerody-
namic body there exists, because of the action of viscosity,
a bounduy layer wherein the velooity must be reduced
below the velocity in the otherwise unaffected flow field,
it follows that the velocity of sound cannot be attained at
those poin~ close to the airfoil surface on the lines B and
D of @ure 6.

To estimate the choking Mach number in any practical
case, it is necessary to assume that the effective thiclmess
is equal to the projected thiclmes of the airfoil. Because
of the possible contraction of part of the strwu.p aft of the
airfoil, as well a9 of the assmnption that unidimensional
flow exists as previously described, this procedure will lead

to a computed choking Mach number which is greater than
the theoretically correct values for an ideal, incompressible
fluid. Further, the influence of the boundary layer will
cause the actual choking Mach number to be even leas tlmn
this theoreticrdly correct value. Thus the use of the pro-
jected thickness in the computation maybe expected to lend
to an overestimation of the choking Mach number.

The effect of the boundary layer in this regard may best
be illustrated by the case of a flat plate set at zero nngle of
attack in a two-dimensional-flow wind tunnel. Since the
projected thiclmess is zero, the previously developed theory
would indicate that no choking would occurr in this cnse.
Actually, because of the fact that the plate has a boundary
layer and an accompanying wake, choking does occur, as is
shown in the following discussion.

It was seen in the section on wake effect, wherein the
effeot of coniining the wake of a body experiencing drag was
considered, that when the influence of the wnke sprencls to
the walls so that a uniform velocity field again exists, the
temperature at this downstream position is related to the
temperature upstream of the model by equation (13). Using
equation (9), the ratio of the corresponding velocities mny be
seen to be

v“ ‘+’(”’)2H(91
v= (7+1) (M’)’ –

(1[1–(M’)1’–Y(M’)’ $ ; 2+7(M’)2

(7+1) (M”)2
(88)

The velocity ratio is imaginary when the sign of the group
of tarms under the radical is negative. The functional
relationship beween the choked Mach number md the drng-
density factor rca’, found by equating the terms under the
radical to zero and solving the resulting equation, is thus
determined as

,GJ=l%%W-J1-[+F%‘8’)

()lC
where, as before, r =Z ~ . Setting y= 1.4 for air gives

.CJ=%$WI+H%Z71“0)
A graph of this function is shown on figure 8. The effect of
drag on choking for supersonic as well as subsonic wind
tunnels is shown a9 a matter of interest.

The manner in which drag promotes choking may be com-
prehended by examining the variations of the ratios V“/V’
and T“/T’ in equations (88) and (13) as the vfdue of 7cd’ is
increased. In the case of the subsonic wind tunnel, the
effect of increasing Ted’ is to increase V“/V’. On the other
hand, T“/T’ and hence Vj’/V.’ are reduced. Consequmtly
M“/M’ is imreased. In the eaae of the supemonic wind
tunnel the effect of increasing Ted’ is to decreaae V“/V’ and to
increase T“/T! and hence V.’’/V.~. Consequently, M)’/Mt
is reduc,ed in this ease. In both oases choking occurs when
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the value of rc~’ is such as to make the downstream Maoh
number M“ unity.

There is one definite limitation of the previous analysis in
that it was assumed that the effective tunnel area remained
constant at least until the wake had spread to the walls so
that uniform flow conditions were obtained across the stream.
Such a condition does not prevail in any conventional wind
tunnel, nevertheless the remdts are U9eful in providing ap-
proximate valuea for the effect of drag as it determines
choking. I?or example, a flat plate having an apparent drag
coefficient of 0.007, if the chord-height ratio were 0.5,
would choke a subsonic wind tunnel at a Mach number of
0,96 if choking occurred as assumed in the analysis. The
serious influence of drag on choking for airfoils for which the
drag coefficient may ’be”many times this value is evident.

To summarize, it has been shown that choking will occur
in a wind tunnel as a result of the confinement of the flow
caused by the presence of the model and its wake. In the
case of airfoils of normal thiclmess, choking will usually
be determined by the tiective dimensions of the body—that
is, by the actual dimensions modiiied for the effects of
boundmy layer and stream contraction aft of the airfoil as
previously described. Properly, the boundary-layer eflect
is a drag influence, but since its contribution is usually small
it is most convenient to classify such confinement eilects
along with those due to the physicxd airfoil dimensions. In

the ease of very thin airfoils, at small angles of attack,
choking will usually result from the coniining effect of the
wake rather than the eilect of the airfoil thiclmess.

Once the ohoking Mach number is reaehed, no further in-
crease in tunnel power ean ailect the apparent Mach number.
Such an increase will only serve to extend the supersonic flow
region downstream of the lines of sonic speed. The forces
experienced by the airfoil at choking thus vary depending
on the power input to the wind tunnel.

As a final consideration it should be noted that the flow in
the tnnnel at choking does not correspond to any real flow
over an airfoil in free air. Since the choking Mach number
approadws unity as the tunnel height h becomes iniinite,
flow in the tunnel at choking, if it is to correspond to any flow
in free air, must correspond to the flow that would occur
around an airfoil in a free stream moving at the velocity
of sound. It can be demonstrated, however, that such
n correspondence is impossible. Experimental evidence
indicates that the flow c&ditions existing in the tunnel at
choking are ewentially steady state. That the flow about
an airfoil in a free stream having the velocity of sound
camot be a steady-state flow can be redly shown. For
instance, it was demonstrated previously that in any stream
tube the velocity of sound, if it is attained at all, must be
attained at the minimum area section. That is to say, tho
rate of flow per unit area is a mtium where the velocity is
the velocity of sound. Now, presuppose a steady-state
flow in the stream tubes in the vicinity of an airfoil in free air
when the stream veloci@- is sonic speed. If the veloci~
either increases or decxeases as the flow passes the airfoil, the
stream tubes must expand. This is clearly impossible, since
the disturbance to the flow would then increase continuously
as the distance horn the airfoil increases. “On the other
hand, if the veloci~ remains the velocity of sound in each
stream tube, the streamlines will then have the same shape
at all distances from the airfoil. Also, the pressure will
remain constant throughout the entire flow field. This is,
of eoume, impossible, since pressure differences are necessary
to promote the required changes in the direction of flow
past the airfoil. A steady-state flow similar to that observed
in the tunnel at ohoking therefore cannot mist in free air
at a free-stream Mach number of unity. Thus at the choking
Maoh number, the flow at the airfoil in the tunnel cannot
correspond to any flow in free air. It follows that, at choking,
the influence of the tunnel walls cannot be corrected for.
Further, in the range of Mach numbers close to choking,
where the flow is influenced to any extent by the incipient
choking restriction, any correction for wall interference must
be of doubtful Vfdidity.

That the flow at or olose to choking cannot be corrected
for the interference effects of the tunnel walls may be rea-
soned from another point of view. The assumption that it is
permissible to correct wind-tunnel test data for the intluence
of the walls is justified only when the influence on the flow
near the model is of suoh a uniform nature as not to alter
the generil -character of the flow materially horn some
corresponding flow in free air. For instance, a velocity
correction for wall interference may be applied with con-
fidence only if the velocity increment resulting from such
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interference is constant or nearly constant over that portion
of the flow field wherein the influence of the model on the
flow is important. Viewed in this light, it is clear that at or
close to choking no correction can properly be applied, since
an important influence of the model on the flow is felt over
a range extending close or up to the walls, within which
range the influence of the walls on the flow is not at all
uniform.

It is thus clear that the equations which have been derived
for correcting the teat data obtained in a subsonic two-
dimensional-flow wind tunnel for the effects of wall ider-
ference, cannot apply at the choking Mach number nor for
a range of Mach numbe~ below the choking value. lMore-
over, when the model is not symmetrically disposed, the flow
will, in general, attain sonic velocity acros9 the stream on one
side of the airfoil before it does on the other. In such cases,
it is to be expected that the range of JMach numbers below
choking for which the corrections are invalid is extended
over that which would occur with a more nearly symmetrical
flow pattern.

DISCUSSION

There is, at present, only a very limited amount of experi-
mental data available which can be considered satisfactory
for determiningg the accuracy of the theoretical i.mkwference
corrections derived in this report. lMoreover, none of the
available data were obtained at sufficiently high lMach
numbers to permit an evaluation of the accuracy of the
theory with regard to the effect of compressibility.

In figure 9 are show-n the experimentally determined
variations of lift coefhcient with angle of attack for several
NACA 0012 airfoils having diilerent chord-height ratios.
The data for those models for which the chord-height ratios
are 0.25, 0.5, and 0.8 were obtained from teak in the 7-by
10-foot wind tunnel at the Ames Aeronautical Laboratory.
These models were of 6-foot span mounted across the 7-foot
dimension of the test section; 6-inch-span dummy ends were
used in an attempt to obtain two-dimensional flow. A gap
of about X2 inch occurred between the test panel which was
connected to the balance frame, and the dummy ends, which
were fastened to the tunnel walls. The lift was determined
both from force tests and by integration of chordtie pres-
sure distributions at a section close to midsprm. The data
presented here are those obtained from the pressure distri-
butions. The data for the model for which the chord-height
ratio is 1.0 were obtained from tests in the low-turbulence
wind tunnel of the Langley Memorial Aeronautical Labora-
tory. This 3-footwpan model was fastened directly to the
side walls of the tunnel such that no air gap existed, and the
ift wns determined from measurements of the reaction on
the roof and floor of the test section. The test results for
the v~ious models are shown, uncorrected for tunnel-wall
interference, in figure 9(a). In figure 9(b), are shown the
same data corrected for wall interference by means of equa-
tions (62) and (64b). For all the models, the correction
term depending upon 7c~’ is negligibly small. The test
Reynolds numbers range horn 2,000,000 to 6,000,000. It is
seen that the corrected data obtained with the models for
which (c/h) equals 0.25, 0.5, and 1.0 agree well with one
another and with the section lift characteristic as obtained
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from tests in the NACA variabledensity wind tunnel (refer-
cnco 16). The data obtained with ,the model for which (c/h)
equals 0.8, when corrected, indicate a lower lift-curve slope
than do the other data. This is thought to be due to the
effect of air leakage through the gaps at the ends of the test
panel, the influence of which may be expected to become
more pronounced as the chord of the airfoil is increased
relative to the span.

In this regard, unreported tests in the Langley low-
turbulence wind tunnel have shown that the presence of any
gap through which leakage can occur will influence the aero-
dynamic characteristics to a surprisingly marked extent.
This fact was also demonstrated by the Ames Laboratory
tests on the NACA 0012 airfoils. A comparison of the lift
chamcteristica obtained from balance measurements with
those derived by integration of the pressure distributions,
which are those given in @e 9, showed the lift-curve slopes
for the former to be definitely lower than those for the latter.
This indicates that the lift near the center of the test panel
exceeded that at the sections near the gaps; that is, that the
flow was definitely not two-dimensional.

In figure 10(a) is shown the experimental variation of
lift coefficient with angle of attack for an NACA 23012 for
which (c/h) equals 1.0. These data were obtained in the
Langley low-turbulence wind tunnel at test Reynolds num-
bers of 4,560,000 and 6,450,000. The same data corrected
for tunnel-wall interference by means of equations (62) and
(64b) are shown in iigure 10(b), together with section lift
characteristics m obtained in the variabledensity wind tun-
nel at an effective Reynolds number of 5,000,000 (reference
16). The corrected data are seen to be in excellent agree-
ment with the results from the vqriabledensity tunnel.

In figure 11(a) is shown the variation of quarter-chord-
moment coefficient with lift coefficient for the NACA 0012
airfoils m obtained from the 7- by 10-foot wind-tunnel tests
previously described. In @ure n(b) are shown the same
data as corrected for the interference of the tunnel walls by
means of equations (62) and (63). The section moment
characteristics for this airfoil as obtained from tests in the
vmiabledensity w@d tunnel (reference 15) are also shown
for comparison. It is seen that the corrected data are in
fair agreement with the data from the variabledensi~ wind
tunnel, except for the model for which (c/h) equals 0.8.
It is believed that this dimggeement is sgain due to the effects
of air leakage through the gaps between the test panel and
the dummy ends, and not to any shortcoming in the theory.

In figures 12 and 13, the uncorrected and corrected proii.le-
drag coefficients for six symmetrical bodies at zero angle of
attack are plotted as a function of the experimental chord-
height ratio. The uncorrected experimental values cd’,
shown by the crosses, are taken from results reported by
I?age in reference 17. The theoretically corrected values
c~, indicated by the circled points, were computed from
equation (67) for M’=0. The extrapolated free-air vslue
given in reference 17 for each of the bodies is indicated by
a horizontrd dashed line. It is seen that the corrected
points are in good agreement with the extrapolated free-air
values. In view of the assumptions made in the theoretical
development, the relative accuracy of the corrections at
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large chord-height ratios and large drag codicients is re-
markable, particularly in the case of the circular cylinder.

Glauert (reference 2, pp. 56-57) suggests for the drag

correction in an incompressible fluid
written in the notation of this paper na

a formula which may bo

‘~=c’’{’-2A”-2K(No(91)

where (t/c) is the thickness ratio of the airfoil. In this
equation, win equation (67), the first correction term appears
as a result of the interference between the airfoil thiclmcw
and the tunnel walls and is identical with the oorrespording
term in equation (67) for iW=O. The remaining term is on
empirical earection for the effecb of the wake. Tho empiri-
oal factor ~ is given by Glauert as a function of (c/t), tlm
values being derived by fitting equation (91) to tho experi-
mental data of referenoe 17. This wake term differs funda-
mentally from the wake correction of equation (67) in thnt
the correction in this csse consists of a singlo term which
varies as (c/h); whereas the correction in equation (67) com-
prises two terms, one of which varies as (c/h) and one of
which varies ns (c/h)’. Equation (67) gives corrected results
which agree as olosely with the free-air values aa do the
results obtained with equation (91). It has the advnntago
that it is generally applicable to all airfoils and does not
depend upon the experimented results of tests of specific
sections.

In summary, the corrected data of figures 9 to 13 indicate,
for the most part, that when the flow is maintained strictly
two-dimensional, the theoretical corrections for the tunnel-
wall interference are, for low Mach numbers at lenat, accumto
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Up to chord-height ratios of unity. The high accuracy
observed at the larger vaba of (c/h) must, however, be
regarded as fortuitous since the theoretical analysis is predi-
cated upon the assumption that the chord-height ratio is
small enough that all points of the airfoil may be aasumed h
lie on the cemkr line of the tunnel and that powers of (c/h)
higher than the second may be neglected. It is thought
that, at low Mach numbers, chord-height ratios as high as
0,7 are permissible if the tests are conducted only for the
purpose of obtaining drag characteristics at low values of the
lift coei%ciont. Eowevar, care must be exercised in ascer-
taining the mtium chord-height ratio permissible in any
particular case to insure that the interference lift represented
by equation (65) is not of such nature and magnitude as to
affect the general character of the flow in the boundary lay-
er along the surface of the model. ~ tests conducted to
determine the aerodynamic characteristic of a model up to
and beyond the maximum lift, it is believed that the chord-
height ratios must be kept to much lower values. At low
Mach numbers, chord-height ratios up to 0.4 are probably
permissible; however, there are no experimental data avail-
able at present to support this contention.

As noted previously, no experimental data could be found
which would permit an evaluation of the accuracy of the
calculated effects of compreAbili@- upon the wall-inter-
ference corrections. Most certainly, = the test Mach

numb era &rease, the permissible chord-height ratios must
decrease. It is considered that as long as the velocities
induced at the position of the airfoil by the wall interference
am small as mmpared with the velocity of the undisturbed
stream, the corrections developed in this paper are applicable
even though the stream Mach numb er exceeds the critical
for the airfoil under test. However, as previously noted, at
and for a range of Mach numbers below choking, the inter-
ference velocities are no longer small and the corrections are
invalid. The extent of this range is unknown. It should be
emphasized that the flow pattern at and in the immediate
vicini~ of choking does not correspond to any flow pattern
obtainable with the airfoil in free air; so the test results in
this range cannot be corrected by any method.

For zero Mach number (i. e., for an incompressible fluid),
the results of the present paper can be compared with
Goldstein’s particular corrections for airfoils having small
thickness and camber and small force coef6cients. For an
airfoil on the centerline of the tunnel, equations (138), (139),

(140), (143), and (144) of reference 3, together with the
expressions of appendix 5 of reference 4, give the following
equations for the velocity, angle of attack, and aerodynmnic
coficients in an incompressible fluid:

v= v’{1+ U(2C,– C,) }

“=”’++’+4(+J

C2=CJ’{1— U}

C~=C~’{ 1—3u(2C0—(?J ]

(92)

Here, the moment coefficients are for moments about the

()
midchord, and cm: is the moment coefficient at zero lift

o

infree air.The qu&tities CO and a are determined by
the shape of the base proiile according to the equations

(93)

In deriving thw.e equations, the notation of references 3 and
4 has been changed to aggee with that of the present paper,
and the lift-curve slope in free air assumed to have its
theoretical value of 2~.

The corresponding corrections m obtained by setting
M’= O in equations (26), (62), (63), (64a), and (67) of the
present paper are

V=v’{l+AU+7c.’}
I

a=a’+dcJ’+4c%’l

CI=CI’ { l—u—2Au—27cd’ }
t

C~=C~’{ 1 —3Au—27c~’ ] I
(94)
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The last of these equations is obtained horn eq;ations (62)

I 1
and (63) by means of the relation cmC=cm5+~ cl.

74

The correction terms involving u in the two equations for
the velocity are equivalent, except that the factor A, which
appears in the equation of the present paper, is replaced in
Goldstein’s equation by the quantity (X’O— GJ. J@atiO~

(93) give

which becomes, after substitution horn equation

‘2@@=:J’&)’(:)=:$

(44),

(95)

where A is the cross-sectional area of the airfoil. The
factor A can be expressed in analogous form by means of

equation (19.05) of reference 2. Since ~ A@ is equivalent to

the quantiQ- M in reference 2, this equation becomes

A=! A+A,
Tc’ (96)

where A, is the so-called “virtual area” of the base proiile.
The virtual area of a given body in two-dimensional flow is
defined as the area occupied by a fictitious quantity of
fluid having a uniform densi~ p and velocity Vand possessing
a kinetic energy equal to the total kinetic energy of the field
of flow about the same body when it is moving forward with
a steady veloci~ V through an unlimited expanse of incom-
pressible fluid of density p. The magnitude of the virtual
area depends upon the shape as well as upon the size of the
body. It is seen that the fit correction term in the veloci~”
equation of the present paper (which for the incompressible
case is simply the result originally derived by Lock) has a
somewhat higher value than the correction term of the
Goldstein equation. The Goldstein equation contains no
term corresponding to the term 7c.’ in the equation of the
present paper Goldstein includes this correction, however,
in the equation for the determination of the stream velocity
from measurements made at the tunnel wall upstream of
the model.

The Goldstein equation for the correction of the measured
drag coefficient likewise diifers from that of the present
paper by the replacement of the factor A by the quantity
(2C0– Cl) and by the omission of the term in red’. If
Goldstein’s equation is applied to the experimental results
of Fage given in figures 12 and 13, it is found that there
is little to choose between the corrected results given by the
two equations, except in the case of the circulax cylinder
where the results obtained from the equation of the present
paper are better.

The corrections to the lift and moment coefficients as
derived by Goldstein differ markedly from those of the pres-
ent paper in that Goldstein’s equations contain no terms

correspon~ to the 2AIJ and 2Tcd’ terms which appear ~
the equations of this paper. As has been noted previously,
tie 27cd’ tarn is accounted for indirectly in the determination
of the apparent stream velocity. A term of the type 2Au
is net-, however, to correct the measured coefficients
for the increase in dynamic pressure caused by the inter-
ference between the walls and the airfoil thickness.

Since the moment coefficient at zero lift is the same about
any axis and since the change horn the free air to the meas-
ured moment coefficient in the correction to the angle of

I attack will introduce only differences of the second order
in a, Goldstein’s equation- for the corrected angle of attack
may be written with sufficient accuracy as

.=./+&[cz’+,(cm<)o]

In this equation, the part of the correction due to the moment
on the airfoil is constant, its value depending only upon
c~J for zero lift; whereas in the corresponding equation of

th~ prwent paper the part of the correction due to the mo-
ment varies with the angle of attack. This difhrence is of
small consequence in most applications; however, the equa-
tion of ‘tie present paper, which includw the actual variation
in moment, may be somewhat the more accurate, especially
at high angles of attack.

The compres-sibili@- factora which appear in the comploto
equations of the present paper are comparable with tlm
results of Goldstein and Young (reference 5). The equation
for drag as given in reference 5, when expressed in coefficient
form and altered to agree with the notation of the present
paper, can be writimn

{ ()1Cd=cd’1–[1– (kl’flA”-[1- (ivl’~” i
(97)

This equation is obtained by modifying equation (91) to
include the tiect of compressibility. Comparison of the
compressibility modifications of equation (97) with those of
the corresponding terms of equation (67) reveals thot the
compressibility factors appearing in the first correction terms
tier by the inclusion of a term — (M’)X in Lhe numerator in
equation (67). This di.flerence arises from a failure to noto
in the development of equation (97) that in a compressible
fluid the dynamic pressure in the tunnel is affected by the
change in density which accompanies the change in nxinl
velocity. The compressibility factor of the second (or
wake-correction) term of equation (97) is not comparable
with the compressibility factors of the wake-comection terms
of equation (67) because of the fundamental difference in
the nature of the corrections already pointed out in the
disction of equation (91). The compressibility f~ctora in
the equations for lift, moment, and angle of attack in refer-
ence 5 agree with those appearing in the corresponding
terms of the equations of the present paper. It should bo
noted, however, that the lift and moment equations of
reference 5 include no corrections for the difference between
the true and apparent dynamic pressures in the tunnel.
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CONCLUSIONS

Airfoil dwta obtained from tests in a two-dimensional-flow
wind tunnel can be corrected to free-ati conditions by means
of the following equations:

{

1+0.4 (M’)2 ,
‘=V’ 1+[1– (L)q’~”+ ~’c’ 1

(26)

~=Q’{1*’”’[2-(M2:[:J$$(M’)’’c~’l ‘2’)

I
~=R, ~+ 1–O-7(W’ ~a+[H3.7(~~

[F@UF~ 1

(33)

a=~t+,*{c’+4c”i’l(d~e”)
I

2— (M’)a
C“c; 1–*’ – ~fi

[2– (M’)q [1+0.4 (M’)’] ~cd,
1–(M)2

{

I
2— (M’) z

%, =’w.’ 1‘[l_ (M,)q,@ AU-
7 7

Au—

[2– (M’)1 [l+o.4(iW)q ,Cd,
1–( ~)’ }

+’~4[&&)q

(64b)

(62)

(63)

[

3–0.6 (M’)z [2– (M’)q [1+0.4 (i’kf’)q ,Ca,
“=’d’ 1 ‘[l_ (~/)q3/2 Au–

1 – (~t) 2
I

(67)

where

Tic’()‘=Z3 z
and A is a dimensionless factor the value of which depends
upon the shape of the base profle of the airfoil. (See equa-
tion (3) and table I.) The remaining symbols are defined in
appendix B. Numerical values of the functions of ill’ which
appear in these equations are given in table II. Experi-
mental pressure distributions also can be corrected by a
method outlined in the text.

The corrections derived are thought to be applicable up
to a Mach number near the choking value, which is the
maximum Mach number attainable in the wind tunnel. The
choking Mach number is shown to be the stream Mach
numbm at which a Mach number of unity is attained locally
across the tunnel either (1) at the position of the airfoil be-
cause of the reduction of the available flow area occasioned
by the presence of the airfoil, or (2) downstream of the airfoil
as a result of the influence of the airfoil drag upon the flow
in the wake. The choking Mach number can be intimated
by means of equations presented in the report.

Insofar as q.an be ascertained from the small amount of
experimental data available, the correction equations are
applicable at low Mach numbers for values of the chord-
height ratio (c/h) as high as 0.7 if the teats are conducted for
the purpose of obtaining drag characteristics at low values
of the lift coefficient. In tests conducted to determine the
aerodynamic characteristic of an airfoil up to and beyond
the maximum lift, it is thought that a chord-height ratio of
0.4 is permissible at low Mach nnmbem, although there is no
experimental evidence to support this contention at present.
At high Mach numbers the permissible chord-height ratios
must logically be expected to decrease. In particular, if
the critical speed is exceeded, it is probable that only very
small values of (c/h) are permissible. There are at this time
no experimental data available on this aapect of the problem.

Comparison of the re9ults of the pre9ent paper with those
of references 3, 4, and 5 revefi certain differences as noted
in the section Discussion.

A.MES AERONAUTICAL LABORATORY,

NA~ONAL ADVISORY COMMITTED FOR AERONAUTICS,

MOFFETT FIELD, CALIF.

APPENDIX A

THE VELOCITY FIELD FOR A SOURCE AND FOR A SYM-
METRICAL AIRFOIL IN A COMPRESSIBLE STREAM

The velocity induced at a point in a compressible fluid
stream by a single fluid source can be found to a tit degree
of approximation by a modification of the method used by
Glauert (reference 7) for the consideration of a vortex in a
compressible fluid. To ti end, a system of polar coordi-
nates is introduced. The origin is located at the source and
the polar da extends downstream parallel to the velocity V
of the undisturbed stmarn. (See fig. 14.) The resultant
velocity U at any point L(r,#) is defined by the velocity
components w and n parallel and normal, respectively, to the
radius vector.

n

v

.

FmuBE 14.-VehxitY Indncdd by a .mmrc&

The condition for irrotationed motion requires that at all
points in the field

a(~) aw o
-37--=a~ (Al)

The equation of continuity is

where piisthe densi~ of the fluid at any point.
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The source stiength (mass flow per unit time) is denoted
by Q. Then, for any circle enclosing the source, considera-
tions of symmet~ and continuity, respectively, provide the
two integral relationships

rnr d@=o
o

(A3)

and

r
o PW o%=Q (A4)

The radial and circ~erential components of the veloci~
may be espanded in the series

where A, and B. are functions of ~. If r is large, it is suffi-
cient to retain only the first terms of each power series, so
that

‘=v(cos’+$)
‘=-v(&’+:) 1

(A5)

To the first power in (l/r), the square of the resultant velocity
is

r) ‘=w’+n’
v r (A COSI#I+Bsin ~)-=1+2

For reversible adiabatic flow, the local density pzis related to
the density p of the undisturbed stream by

where M is the Mach number of the undisturbed stream and
T is the ratio of the specific heats. Thus, to the first power
in (l/r),

PJ=P{ 1–:(A Cos @+B sin 0)] (A6)

The solution is now obtained by inserting values from ex-
pressions (A5) and (A6) into the fundamental equatichm
Substitutions of (A5) into the equation for irrotational
motion (Al) requires that A shall be a constant. Substitu-
tion of (A5) and (A6) into the equation of continuity then
givw

dll
~(1–~ ti’ @)=M’(A COS24J+~ sin 24)

which becomes upon integration

B(l–M’sin2 +)=; WA sin 24+C (A7)

where C is a constant. The integral equations (A3) and
(A4) become, respectively,

s‘r

B dd=o (As)
o

and

JW’ (? Q
-TO B SiIl 24)d4=27rA l–y –TV (A9)

Substitution of the expression for B from equation (A7)
into the integral equation (A9) gives

while substitution into equation (As) shows that C= O.
Thus, from equation (A7),

[

M’sin2(#l 1B=* (1–34-’ sin’ 4) FM

The expressions for the velocity components therefore
become

W=vcos ~+ 44A=]
~ (A1O)

&
[

Wsinl#lcos(# 1‘=–v&4–2Tpr (l–M-’sin’ @)&zP

For a Mach number of zero these equations reduce to the
well-known results for a source in an incompressible fluid.

From equations (A1O) the velocity components u and v,
pdeI and perpendicular, respectively, to the direction of
the undisturbed stream, are found to be

(All)

The drag experienced by the source cm be determimd
by evaluating the integral

D=–~ti{p, COS@+13@(W COS+–n Sin +)}r dd

over any circleenclosing the source. To the accuracy pre-
viously employed, the pressure at any point is

( cos (#)+B SiIl~)Pl=p–p: A (A12)

Insertion of this expression, together with (A5) and (Af3),
into the equation for drag gives finally

D=–VQ (A13)

which is the same as for a source in an incompressible fluid.
It is apparent from considerations of symmetry that the lift
force of the source is zero.

The results of equations (Al 1) can be used to study the
field of flow about a symmetrical airfoil at zero angle of
attack in a uniform stream. Such an airfoil can be repre-
sented by a suitable system of sources and sinks distributed



WALL mTERI?ERENCE IN A TWO-DmNSIONAL-FLOW WIND TUNNEL, CONSIDERATIONOF EFFECI?OF COMHiESS~ 181

continuously along the chord line. If the notation of figure
16 is used, the vertical velocity o~ induced in m incompr*-
sible stream at a given point (%, yJ on the surface of the
airfoil is

77
WI

& v

1’ ?“v G
\~ ‘ ,

*X
+0

P =0 b

FIQIJFLE l&—VehdtY Induced by a symmetrical alrfofl.

dQ,
whore

()
~ is the strength per unit length of the source-

sink distribution in m incompressible stream. From the
second of equations (Al 1) it follows that the velocity o. at
the same point in a compressible stream is

1

J
‘ d=tiI$ dQo

“=%p 0 r(l—ii!@ ()sin’ #l) ZF &

or

‘~=’1E3kdbm7(%)’“15)
dQc

where
()

~ is the strength of the source-sink distribution

in the “mm-pressible case. For any given airfoil of d
thickness the condition that the flow shall be tangential to
the surface of the airfoil requires that 00=0* at all points on
the surface. This fact can be used to relate the source-sink
distributions for a thin airfoil in the compressible and incom-
pressible streams by considering the limiting forms of equa-
tions (A14) and (A15) as YOapproached zero.

Consider first the limiting form of equation (A14), which”
may be written

It is seen that even for yo=O the integral in this equation is
linitm when evaluated over Wy interval of integration not
including the point z=%. In the limit, the contribution of
such intervals to the rightihand side of the equation is
therefore zero, and the equation may be written

In evaluating the limit in this equation, care must be taken
that the limit with respect to VOis taken tit in every case.
Integration by parts gives

(’17)

By virtue of the fit mean value theorem for integrals (ref-
erence 18, p. 65) the integral term in this equation may be
written

where (%—e) =tlqq and u~bq (%+c). The divisioninto

two integralsisnecesswy to ensure that the conditionsunder

which the mean-value theorem is applicable are fulfilled:

(&Q,()namely, that ~ is continuous and that tan-l ‘~z has

the same sign throughout the interval of integration.
Integration gives

In the limit, the value of the terms in the second bracket is
zero. Thus, only the first term need be retained in equation
(A17), which may now be written

()1 dQt.—
‘Kp 75

~ ~ tin-l 3

z-lo !+0 gC-)0 2/0

Thus the limiting form of equation (A14) becomes finally

()1 dQf
‘i=Fp x

(’18)

dQ,()where of and ~ may now be considered as pertaining to

the same general chordwise stationz

The limiting form of equation (A15) can be found in
similar fsahion. In this case integration by parts gives in
place of equation (A17)

As before, the value of the integral term in this equation is
zero. The limiting form of equation (A15) becomes iimdly

which is the same as (A18).

(’20)
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Since for any given airfoil U.=oi at all chordwise stations,
it follows from (A18) and (A20) that

(%)=(*) (AM)

that is, the source-sink distributions necessary to represent
any given thin symmetrical airfoil in a uniform stream are
identicaI for the compressible and incompressible case.

This result can be used to calculate the effect of compres-
sibility upon the field of induced velocities at a considerable
distance from the airfoil. The increase in longitudinal
veloci~ at a large distance VI directly above or below the
midchord point of the airfoil in an incompressible fluid is
approximately

–ST=)(%9A(’w–v)=2.;/ ~
By virtue of the firstof equations (Al 1),the corresponding

velocityat the same point in a compressible fluidisapproxi-

mately.

Thus, in view of equation (X21),

(A22)

that is, in a compressible fluid the increase in longitudinal
velocity at a point a considerable distanm directly above or
below a symmetrical airfoiI is l/(1 —M2)sfl times the increase
in longitudinal velocity at the same point in an incompress-
ible fluid.

The foregoing results can be used also to determine the
effect of compressibility upon the drag of an airfoil in a stream
having a longitudinal pressure gradient. Consider an un-
disturbed nonuniform stream having at some given point
a velocity V, a density p, and a streamwise pressure gradient
dp/d&. By virtue of Bernoulli’s equation, there must be at
this point a velocity gradient

(A23)

This holds true both in the compressible and the incompress-
ible case. The velocity o a small distance x from the point
in question is then

(AM)

As a result of equation (A13), the drag experienced by an
airfoil placed at this point in the stream is, for both the com-
pressible and incompressible cases,

where (dQ/&) is, as before, the strength per unit length
of the source-sink system necessary to represent the airfoil.

In order to fulfill the condition that the airfoil is a closed
body, the source-sink system must be such that

H )c dQ
, & dx=o

Thus the drag is iimdly

(Am)

in both the compressible and the incompressible case. If
the streamwise pressure gradiint is small, equation (A21)
is still appkable; that is, the source-sink distributions

neqesaary to represent the airfoilin the compremiblo and

incompressible csses are identical. It therefore follows

flom equation (A25) that the drag of an airfoilin a stream

having a longitudinal pressure gradient is unaffected by

fluidcompressibility.
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APPENDIX B

LIST OF IMPORTANT SYMBOLS

airfoilchord.
airfoil thickness.
tunnel height.
s factor depending upon shape of base profile, (Sm

equation (3) and table I.)

~ c *; factor depending upon size of airfoil relative
()ax

to tunnel.

i)
1 c ; factor depending upon size of airfoil relative to
4h

tunnel.
angle of attick.
section lift coefficient.
section quartwwhord-moment coefficient.

section midchord-moment coefficient.

section drag coefficient.
stream veloci~.
math number.
apparent Mach number at choking.
Reynolds number.

~; ratio of speciiic heat of gas at constant pressure

to specific heat at constant volume (for airy= 1.4),
total head.
static pressure.
dynamic presanre.
mass density.
coefficient of viscosity.
absolute temperature.
speed of sound.
compressibility factor. (See equation (71) and fig. 4.)
section drag.
section drag due to streamwise pressure gradient.
chordwise lift distribution in coefficient form.
interference lift distribution. (See equation (78) and

table III.)
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Pt
s,
x

o

r
4

tp
t,
?/1

dy,-.

:

‘$
u
v
?L

w
A
A,
A’
A.

At
An

local pressure coefficient. (See equation (69).)
local pres.ure coefficient. (See equation (68).)
coordinate of points on chord line as measured from

lerding edge.
angular coordinate of points on bord line. (See equa-

tion (43).)
radial distance in polar coordinate.
pohm angle in polar coordinates (positive counter’

clockwise).
projected thiclmess of airfoil.
effective thickness of airfoil.
ordinate of base profile.

slope of mean-camber line.

source strength.

vorticity per unit length of chord line.

horizontfd component of velocity.
vertical component of velocity.
circumferential component of velocity in polar coor-

dirmtw (positive counterclockwise).
radial component of velocity in polar coordinates.
geometrical area of airfoil section.
virtual area of airfoil section.
cross-sectional area of empty tunnel.
minimum cross~ectional area between model and

tunnel walls.
local cross-sectional area of stream tube.
Fourier coefficients. (See equations (45) and (49).)

Superscripts:

(’) when perttig to fluid properties, denotes values
existing in tunnel far upstream from model; when
pertaining to airfoil characteristic, denotw values in
tunnel, coefficients being referred to appment dy-
namic pre9sure q’.

(“) denotes fl~d properties far downstream from model.
(*) denotes awfod characteristi~ in tunnel as coefficients

referred to true dynamic pressure q.
Subscripts:
c denotes values in compressible fluid (excepting V.).
i denotes values in incompressible fluid. “
1 denotes local conditions at point in fluid.
8 denotes conditions existing far downdmmm when air-

foil and wake are replac-d by source.

$.O.X3

‘o:%

.12
,15
.18
.21
,2s
.W
.34

1:%

........
0.230
. 3m
.403
. 4EC
.&o
.7X3

1:V9

if%

0.127
.196
.!m
.346
.425
.W4
.026
.724

1:%!
4.(03

m deno- conditions at minimum cross-sectional area
between airfoil and tunnel walls.

L denotes values on lower surface of airfoil.
U denotes values on upper surface of airfoil.
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TABLE I.—VALUES OF A FOR VARIOUS BASE PROFILES
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TABLE H.—COMPRESSIBILITY FACTORS FOR CORRECTION EQUATIONS

!..%%~
LC@3
1. L32
L!2?J
L640
L 717

k%
2279
24sa
2746
3. ml
3.4M
3.962
4.62a
6.m
6.!ZU
7.626

l%
1’4.m
I&61
2). 14

E
:
3?.

$;
L 072
L li3
1.341
1.617
1.E21
2cL91

H?!
2716
.%016

:%
4.438
&223
&m
7.143
%639

10.78
14.co
16.3a
19.43
23.62

$
..

r
2.

~;

L WI
L KM
L382
L6W
L 925
2234
24al
2W4

:%
3.764
4.234
4.914
6.815
6.767
&m
9.752

12 B
lm w
lam
2224
27.10

H%
23m
!Lts’1
2914
Z.m
3.323
8.696
3.845
4.146

~i

6.2%

M%
9.485

H. 44
14.37
m 44
19.16
!2288

3. lfi4
%s4
3. m
4.38s
4.s39
6.437
6.814
6,’2.53

H%
8.217
9. ml

III 46
1211
13.86
I&13
19. 2!

M
3h 12
41.40
49.96

TABLE 111.-VALUES OF P. AT STANDARD CHORDWTSE
STATIONS

z\c I P. I =/. I P.
1

0 0
.Cm . 17M
. ml% . 21s@
- OIZJ .Z?xl
.02s .2076

:E :%$
.10 .m
.15
.al i%
.26 L lW

L 1670
:%’ L 2146

1

0.40
.46
.Ea
.M
.60

::
.7.5
.m
.s.5
.’a

i%

1. C87
1. lm;.Z#
1:706
1.910
2640
2.196
2369
2575
2819
3.116
3. 4n
3.E36
4.306
4. m
h712

w

1; ‘%
11.69

1
w
~
-.

:$
~f
~
.J4

2074
2<174
2. al
2EJ6
2. 72s
2 ‘ml
3. M.-4
3. IW
3. w
3.641
3.701
4.026
4.346
4.746
h 142
6.637

?%
am
9.076

10.0s
11.31

.


